Advanced Burning Building the Heavy Elements

Advanced Burning

 \blacklozenge Advanced burning can be (is) very inhomogeneous (is) very inhomogeneous \blacklozenge The process is very important to the chemical history of the galaxy \blacklozenge The problem is to not only explain the existence of heavy elements, but also their absolute and relative abundances. abundances.

Energy Generation Nucleosynthesis Energy Generation Nucleosynthesis

 \blacklozenge Energy generators build elements up to $Z \sim 20$ $\sqrt{22}$ (maybe 26).

 \blacklozenge The exact amount depends on the source

 \rightarrow Type II SN (10-100 M_{sca}) put out lots of O which is generated during He burning

 \blacklozenge Type I SN (<1.41 M_{sca}) put out great quantities of Fe.

So What is Built During Energy Generation?

\blacklozenge He

- – $-$ He⁴ – Result of H burning
- – $-$ He³ – Incomplete pp chain

\blacklozenge Li, Be, B

– – $-$ These are not formed during pp or CNO – Their abundances present difficulties due to their sensitivity to destruction – best current source is spallation of C^{12} by cosmic rays

\blacklozenge C¹², O¹⁶

- – $-$ Formed in 3α process (and immediate follow-on)
- – $-$ Also get some ${\rm O}^{18}$ and Ne 22

Proceeding

 \bigcirc N¹⁴ – – $-$ Forms as a result of CNO processing during H burning. \blacklozenge Ne²⁰, Na, Mg, Al, Si, (P, and S) – –- Result from C burning – – $-$ The latter two come from O burning \rightarrow We are up to Z = 16 and A 32 – – $-$ Note that fluorine is missing (Z = 9)

Comparison

 \blacklozenge The relative proportions produced by these burning processes agree rather well with the values seen in the solar neighborhood. \blacklozenge The absolute quantities are governed by not only the mechanism but also by the "rate" or

the yield per generation.

– – $-$ To get into stars this material must be recycled

Production of $A \ge 28$

 \blacklozenge We consider the range 28 \le A \le 60

 \blacklozenge The high end of the range is the Fe peak a very strong perturbation in abundance versus Z.

Advanced Burning 7 (1996) 2007 12:00:00 12:00:00 12:00:00 12:00:00 12:00:00 12:00:00 12:00:00 12:00:00 12:00:00

What Burns Next?

- \blacklozenge We have built: Ne²⁰, Na²³, and Mg^{24,25,26}
- \blacklozenge We also have available: Al²⁷, Si^{28,29,30} as well as P³¹ and S³².
- \blacklozenge The next fuel should be the species that has the lowest Coulomb barrier: this will be either Ne²⁰ or $Na²³$ or maybe Mg. But there is less Mg than there is Si or S.
- \blacklozenge Gamow Peak: T \simeq 2 or 3 (10⁹) K
	- – $-$ Thermal rays can photodisintegrate S^{32} and perhaps (ultimately) $Si²⁸$

 \rightarrow Normal Burning cannot proceed!

What Happens Next?

Normal Burning Cannot Proceed

- \blacklozenge A quasi-equilibrium configuration is established involving photodisintegration and particle capture.
- \blacklozenge Ultimate end is the production of the Fe- peak.
- \blacklozenge Fe Peak elements are highly favored: the binding energy per nucleon is at or near maximum at Fe.
	- –– Binding Energy is defined as the energy it takes to separate the nucleus into individual particles.

The Binding Energy Curve

Details of Si Burning

 \triangle At 2(10⁹) K absorption of energetic photons by nuclei produces excited states which can eject nuclei produces excited states which can eject p, n, α.

\blacklozenge Reaction Rates: $r_i \sim \exp(-Q_i/kT) \Gamma_{eff}$

- – $-Q_i$ is the binding energy of the ejected particle
- – $\Gamma_{\rm eff}$ $\frac{1}{2}$ producing maximum rates near the Gamow peak.
- \triangle After O¹⁶ burns the dominant species are Si²⁸ and S32.
	- – $-$ Other products of O^{16}/C^{12} burning do not affect energy generation but do affect element generation.

$Si²⁸$ and $S³²$

 \blacklozenge Si²⁸ is more tightly bound that S³² so at 2.5*10⁹ K: $S^{32} + \gamma \rightarrow Si^{28} + \alpha$

– –- Therefore, at 3(10⁹) K the core is mainly Si²⁸

 \blacklozenge There follows two competing processes:

- – $-$ Disintegration of Si²⁸
	- \blacklozenge Si²⁸ + γ \rightarrow Al²⁷ + p
	- \blacklozenge Si²⁸ + γ \rightarrow Mg²⁴ + α
	- \blacklozenge Si²⁸ + $\gamma \rightarrow$ Si²⁷ + n
	- \bullet Other processes also occur which (could) lead to a dominance of light elements in the core.
- – $-$ The photodisintegration takes place on a finite timescale so \overline{a} particle interactions can occur

Si Burning

 \blacktriangleright Si²⁸ + $\alpha \leftrightarrows S^{32} + \gamma$ $\sqrt{S^{32} + \alpha} \leq Ar^{36} + \gamma$ $\left\langle \psi \right\rangle$ $\sqrt{Cr^{52} + \alpha} \leq Ni^{56} + \gamma$

Details, Details ...

The Net Process: $$ 2 Si 28 \rightarrow Ni 56

- \blacklozenge These chains can also do n,p captures but the α chain is the more efficient
- \blacklozenge The heavier species that are built persist as they have larger binding energies per nucleon.
- \blacklozenge Each of the individual links is a quasi- equilibrium process.
- \blacklozenge The light particles are used up in the formation of the heavier species. The primary source of the particles (mainly α) is Si²⁸ + γ

More Details

 \blacklozenge Si burning will not produce elements with A $>$ 56.

 \blacklozenge Fe⁵⁶ has the largest binding energy per nucleon. To go heavier one must tap the thermal pool – ie, "exothermic" up to Fe^{56} , "endothermic" afterwards. afterwards.

 \blacklozenge Note that n,p reactions to increase Z are also possible. Along with the backward reactions these decide the isotopic content (yield) of Si burning. Note that many of the products are unstable and will begin to β decay.

Still More Details

 \bullet Note that we produce Ni⁵⁶ and Fe⁵⁴. \blacklozenge The dominant isotope of Fe is Fe⁵⁶ (91.8%). $Ni⁵⁶$ has a half-life of 6.1 days to electron capture. It becomes $Co⁵⁶$ which has a halflife of 77 days to either electron capture or positron emission.

 \rightarrow Note the 77 day half-life – it is very important to understanding supernovae.

Energy Generation

- \blacktriangleright $\varepsilon = \varepsilon_0 X_{\text{Si}}^{1.143}$ (1-X_{Si})- $0.143T_o^{6.31}e^{-143/T9}$ – – $-$ T₉ = T in billions of degrees ε_{0} Al 2.9(10²⁷) \div At T₉ = 3; X_{Si} ~ 0.5 – – $\texttt{-} \ \ \epsilon$ = 3(10°) erg gm $^{\text{-}1}$ s $^{\text{-}1}$
- \rightarrow Duration
	- – $-~$ For T $<$ 3 T₉: 10^6 s (11.6 days)
	- – $-$ For T > 3 T₉: can be as little as 10s
- \blacklozenge The nucleosynthetic yield depends on T

Yield From Si Burning

Production of Elements with $A > 56$

 \blacklozenge Coulomb barrier is essentially impenetrable at A $>$ 56 to charged particles \rightarrow **Neutron capture** \leftarrow \bullet Consider the process: $Z^{X^A + n \rightarrow Z^{X^{A+1}}}$

 \blacklozenge There are two possibilities $Z^{X^{A+1}}$ is either stable or unstable

- – $-$ Stable: go to the next step – add another n
- Unstable:
	- \blacklozenge It Decays
	- \blacklozenge It has time to add another neutron before the decay
	- \Diamond This obviously depends strongly on the cross sections and neutron velocities (that is, T)

The r and s process

- \blacklozenge s-process: capture rate is slow compared to the decay rate (usually β)
	- –– Proceed along a chain of stable isotopes of an element until an unstable one is encountered
		- \blacklozenge Then you decay to a new element and start over.
- \blacklozenge r-process: capture rate is fast compared to the decay rate.
	- –- Proceed along a chain of stable isotopes of an element until an unstable one is encountered
		- \blacklozenge And you just go right over it by another capture to another isotope of the same species.
		- \blacklozenge You do this until you cannot proceed
			- $-$ Binding energy problem
			- – A very fast decay/large decay cross section is encountered. A very fast decay/large decay cross section is encountered.
			- $-$ Now decay to a stable isotope
		- \Diamond This builds neutron rich isotopes.

What do we build?

- \leftrightarrow s-process builds the more stable balanced (n -p) species – Valley of β stability
- \rightarrow r-process builds the neutron-rich *isotopes*
- \rightarrow The major problem is where do the neutrons come from? neutrons come from?
	- –– Energy generators do not produce them
	- –– They must come from a subsidiary process

Consider the r-process

- \blacklozenge dN_A/dt = n_N<v>($\sigma_{A-1}N_{A-1}$ $\sigma_A N_A$) σ _A = neutron cross section $- n_{\rm N}$ = neutron # density \blacklozenge To order of magnitude: $1/\tau = n_N \sigma \langle v \rangle$
	- – $-$ σ is an average capture cross section 10^{-25} cm²
	- – $-$ At T \sim 10^9 K $<$ v $>$ \approx 3($10^8)$ cm / s
	- –— Typical β decay is $~\sim$ 10⁻² s so we require τ << 10⁻²
	- –- This means n_N <v> >> 10^{27} cm⁻²s⁻¹
	- – $-$ Since $\langle v \rangle \approx 3(10^8)$ cm / s this means the neutron flux is about $3(10^{18})$

\rightarrow An awful lot of neutrons!