Composition and Mass Loss

Composition and Mass Loss

• Two of the major items which can affect stellar evolution are

Composition: The most important variable is Y

 the helium content

Mass Loss: core evolution is essentially independent of envelope evolution especially during later phases. This means that "lower" mass stars can have a "high" luminosity.

Composition

Y is the more important

- Where this is of greatest impact is in the lifetimes of Pop II/III stars
 - In Pop II (Z ~ 0) t ∝10^{2X} and since X is somewhat larger than in Pop I one gets a longer lifetime.
 - The converse is that He rich stars leave the MS very quickly.
 - Y changes from $0.3 \rightarrow 0.2$ (at Z = 0.03)
 - At 5 M T_{eff} decreases 10% and L decreases by a factor of 2

Heavy Metal Effects

This is for the Main Sequence

Changes in Z lead to evolutionary changes essentially opposite to those in Y but are smaller.
 Z decreases : L and T_{eff} increase
 This means Pop II stars should be more

luminous and hotter than Pop I (at the same X,Y)

Post-MS Composition Effects

- Y is more important than Z for fixing the luminosity
- As a star evolves Z becomes more important as the energy generation involves Z (CNO dominates in higher mass stars, if there is CNO)

The T_{eff} position of the red giant branch is insensitive to Y or Z but the luminosity varies by a factor of 4 according to Y/Z

A Problem: Convective Mixing

There is "no" good *ab initio* theory of convection

Mixing length: defined as some fraction of the pressure scale height
General number used is 1.5

Mass Loss

Solar Mass Loss – The solar wind

- Flux = $10 \text{ p} / \text{cm}^3 \text{ with } \text{V} = 400 \text{ km/s}$
- V must be greater than V_{esc}
- Solar $V_{esc} = SQRT(2GM/R) = 620$ km/s at R_{OP} and 42 km/s at 1 AU.
- Current Solar Mass Loss Rate is about 10⁻¹⁴ M_s/year
 - Integrated Mass Loss 10⁻⁴ M_☉ if the rate has been constant.
- Observed Rates are up to 10⁻⁴ M₃ / year and are mass dependent.

P Cygni Stars

Composition and Mass Loss

Gamma Cas

A model for y Cassiopeiae (B0.5IVe)

Composition and Mass Loss

What Does Mass Loss Do To Stellar Evolution?

- Let us consider two stars with identical composition and the same current mass:
 - Star 1: Constant Mass
 - Star 2: $dM/dt = -a M_{\odot}$ / year
- Obviously Star 2 at t = 0 was more massive than Star 1 → It evolved faster.
- Assumptions:
 - Both convert equal H to He
 - Equal amounts of radiation (energy) produced.

How Do We Proceed?

• Assume L ~ M^{\alpha} (This is reasonable – \alpha is about 3 to 3.2) $M_2^{\ \alpha}T = \int_{-\infty}^{T'} M(t)^{\ \alpha} dt$

• Note that M^αT is just the total energy produced.

- T = age of constant mass star
- T' = age of star with mass loss rate dM/dt
- Assuming the M(t) is known one can solve for T' given M₂, α, and T.

What Happens?

a parameterizes the mass loss

- The sensitivity of the track to the mass loss rate depends on the initial mass:
 - Higher mass stars can sustain a somewhat higher rate without changing the evolution.
 - The integrated mass loss as a fraction of the total mass is comparable.
 - Mass loss of 10⁻¹² M_S or less have little effect on M ~ 1 M_S
 - Mass loss of 10⁻⁹ M_S or less have little effect on M ~ 5 M_S

Rates That Matter

• For a 1 M star 10⁻¹⁰ M / year will halve the MS lifetime Original mass of 1.4 M_{sca} • For a 5 M star 10^{-6} M / year will decimate (10%) the MS lifetime Original mass of 12 M_{sca} • Note that the lifetime goes with the original mass as it sets the energy generation.

Ramifications

Globular Clusters: If they are loosing mass then the age estimates are too large
Measured mass loss rates are variable
The age of the Universe anyone?

Planetary Nebulae

- Stars "blow off" mass in shells planetary nebulae are the result of these episodes.
- Composition reflects extensive processing.
 - C and O enriched
 - Advanced evolutionary stage (post He burning)
- Thought to be post/during ascent to 2nd Giant Branch. (Detach the shell during an envelope expansion phase)
- Alternate mechanism is the hyperwind model associated with the AGB stars of low mass.

PN

Typical Shell Mass is 0.01 M₁. Lifetime is about 50000 years expansion leads to lowering of density until the material becomes some optically thin it cannot detected Core star is usually very blue - probably the core of an ex-red giant – T_{eff} 50000 - 100000K PN are binary systems in many cases.

Stellar Mass and the Final Stage of Evolution

Chandraskhar Limit: 1.41 M
Electron Degeneracy support
Observed white dwarfs in Pleiades and Hyades
Turn-off masses are 4 - 6 M
This means the original masses were in excess of 4 - 6 M
they had to lose sufficient mass to get down to the Chandrasekhar limit.

Close Binaries

- Generally stellar evolution does not take into account close binaries:
 - Wide system P > years and the stars evolve without interacting
- Close Systems
 - Mass exchange through the LaGrange points
 - Fill Roche lobe, push mass through and dump on the secondary
 - Secondary then heats up and becomes the primary these are Algol systems
 - Barium and subgiant CH stars
 - Cataclysmic Variables

Fate of Stars

Category	Mass Limits M	Fractional Mass of Galaxy	Fate
a	<u></u>	0.6	WD
b	1.5 📾 M 📾 4	0.2	WD
C	4 🖮 M 🚎 8	0.06	WD/NS
d	> 8	0.14	SN(NS)