Composition and Mass Composition and Mass Loss

Composition and Mass Loss

 \blacksquare Two of the major items which can affect stellar evolution are

Composition: The most important variable is Y Composition: The most important variable is Y – the helium content

Mass Loss: core evolution is essentially Mass Loss: core evolution is essentially independent of envelope evolution especially independent of envelope evolution especially during later phases. This means that "lower" mass stars can have a "high" luminosity.

Composition

Y is the more important

- Where this is of greatest impact is in the Where this is of greatest impact is in the lifetimes of Pop II/III stars
	- In Pop II (Z ~ 0) t \propto 10^{2X} and since X is somewhat larger than in Pop I one gets a longer lifetime.
	- \blacksquare The converse is that He rich stars leave the MS very quickly.
	- \blacktriangleright Y changes from $0.3 \rightarrow 0.2$ (at $Z = 0.03$)
	- \mathbb{R}^2 \blacksquare At 5 M $_{\text{\tiny{C}}\Box}$ T_{eff} decreases 10% and L decreases by a factor of 2

Heavy Metal Effects

This is for the Main Sequence

 \blacksquare Changes in Z lead to evolutionary changes essentially opposite to those in Y but are smaller.

 \blacksquare Z decreases : L and $T_{\rm eff}$ increase \blacksquare This means Pop II stars should be more luminous and hotter than Pop I (at the same X,Y

Post-MS Composition Effects

- \bullet Y is more important than Z for fixing the luminosity
- \blacksquare As a star evolves Z becomes more important as the energy generation involves Z (CNO dominates in higher mass stars, if there is CNO)

The T_{eff} position of the red giant branch is insensitive to Y or Z but the luminosity varies by a factor of 4 according to Y/Z

A Problem: Convective Mixing

There is "no" good *ab initio* theory of convection

Mixing length: defined as some fraction of the pressure scale height General number used is 1.5

Mass Loss

Solar Mass Loss – The solar wind Flux = 10 p / cm³ with V = 400 km/s $\blacksquare\,$ V must be greater than $\rm V_{esc}$ Solar $\rm V_{esc}$ = SQRT(2GM/R) = 620 km/s at R $_{\rm CP}$ and 42 km/s at 1 AU. Current Solar Mass Loss Rate is about 10⁻¹⁴ M_{\odot} /year Integrated Mass Loss 10^{-4} M \odot if the rate has been constant. Observed Rates are up to 10^{-4} M \odot / year and are mass dependent.

P Cygni Stars

Composition and Mass Loss

Gamma Cas

A model for γ Cassiopeiae (B0.5IVe)

Composition and Mass Loss

What Does Mass Loss Do To Stellar Evolution?

Let us consider two stars with identical composition Let us consider two stars with identical composition and the same current mass:

- \blacksquare Star 1: Constant Mass
- \blacksquare Star 2: dM/dt = -a M $_{\textcolor{black}{\textbf{\textit{S}}\textbf{\textit{G}}}}$ / year
- \bullet Obviously Star 2 at t = 0 was more massive than Star $1 \rightarrow$ It evolved faster.
- Assumptions: Assumptions:
	- \blacksquare Both convert equal H to He
	- ┙ Equal amounts of radiation (energy) produced. Equal amounts of radiation (energy) produced.

How Do We Proceed?

Assume $L \sim M^{\alpha}$ (This is reasonable – α is about 3 to 3.2) $M_{\alpha}^{\alpha}T = \int^{T'} M(t)^{\alpha} dt$ ′∫

 $\frac{a}{2}T = \int_{0}^{t} M(t)$

=

Note that M αT is just the total energy produced. \blacksquare T = age of constant mass star \blacksquare T' = age of star with mass loss rate dM/dt Assuming the $M(t)$ is known one can solve for T' given M_2 , α , and T.

2

What Happens?

a parameterizes the mass loss

- The sensitivity of the track to the mass loss The sensitivity of the track to the mass loss rate depends on the initial mass:
	- \blacksquare Higher mass stars can sustain a somewhat higher rate without changing the evolution.
	- The integrated mass loss as a fraction of the total mass is comparable.
	- \mathbb{Z} • Mass loss of 10^{-12} M $_{\odot}$ or less have little effect on $\mathbf{M} \thicksim 1 \; \mathbf{M}_{\rm eff}$
	- \mathbb{R}^2 • Mass loss of 10^{-9} M $_{\odot}$ or less have little effect on $\mathbf{M}\thicksim$ 5 $\mathbf{M}_{\text{\tiny QCD}}$

Rates That Matter

For a 1 M $_{\odot}$ star 10⁻¹⁰ M $_{\odot}$ / year will halve the MS lifetime \mathbb{R}^2 \blacksquare Original mass of 1.4 M For a 5 M_{\odot} star 10⁻⁶ M $_{\odot}$ / year will decimate (10%) the MS lifetime \mathbb{R}^2 \blacksquare Original mass of 12 M \blacksquare Note that the lifetime goes with the original mass as it sets the energy generation. generation.

Ramifications

Globular Clusters: If they are loosing mass then the age estimates are too large • Measured mass loss rates are variable \blacksquare The age of the Universe anyone?

Planetary Nebulae

 \blacksquare Stars "blow off" mass in shells – planetary nebulae are the result of these episodes.

Composition reflects extensive processing. Composition reflects extensive processing.

- \blacksquare C and O enriched
- Advanced evolutionary stage (post He burning)
- \blacksquare Thought to be post/during ascent to $2nd$ Giant Branch. (Detach the shell during an envelope expansion (Detach the shell during an envelope expansion phase)
- Alternate mechanism is the Alternate mechanism is the hyperwind hyperwind model associated with the AGB stars of low mass.

\bullet Typical Shell Mass is 0.01 M_{ss}. Lifetime is about 50000 years Lifetime is about 50000 years \blacksquare expansion leads to lowering of density until the material becomes some optically thin it cannot material becomes some optically thin it cannot detected Core star is usually very blue - probably the core of an ex-red giant – ${\rm T_{eff}}$ 50000 - 100000K **PN** are binary systems in many cases.

Stellar Mass and the Final Stage of **Evolution**

Chandraskhar Limit: 1.41 M **Electron Degeneracy support Observed white dwarfs in Pleiades and Hyades or** Turn-off masses are $4 - 6$ M This means the original masses were in excess of 4 -6 M $_{\odot\!\Xi\rm}$ they had to lose sufficient mass to get down to the Chandrasekhar limit.

Close Binaries

- Generally stellar evolution does not take into account close binaries:
	- Wide system $P >$ years and the stars evolve without interacting
- **Close Systems**
	- Mass exchange through the LaGrange points
		- Fill Roche lobe, push mass through and dump on the secondary Fill Roche lobe, push mass through and dump on the secondary
		- \bullet Secondary then heats up and becomes the primary these are Algol systems
		- **Barium and subgiant CH stars**
		- **Cataclysmic Variables**

Fate of Stars

