Shall We Play a Game of Thermonuclear War?

Thermonuclear Energy Sources

 Electrostatic Potential
 E_c ~ e²/r₀ ~ 1.7(10⁻⁶) ergs ~ 1 Mev

 In a star pressure and high temperature cause penetration of the Coulomb barrier. Or do they?

The Solar Core

The velocities are Maxwellian: $f(E) = (2/\pi^{1/2}) (1/kT)^{3/2} e^{-E/kT} E^{1/2}$ • E is the average thermal energy of a proton $\blacksquare \langle E \rangle = 3/2$ kT which is several keV at 2(10⁷) K or 10⁻³ E_c! The Sun does not have sufficient numbers of protons at high temperatures to fuel its energy output! Or does it?

Barrier Penetration

- Consider ⁸⁴Po₂₁₂: it is an α emitter with a laboratory half-life of 3(10⁻⁷) sec.
 - The particle has an energy of ~ 9 MeV. This particle should not be able to escape from a classical potential!
- But atoms are NOT classical systems.
 - They are quantum mechanical entities
 - The particles in a nucleus are described by a spatial probability distribution.
 - The probability density is highest where the classical theory says the particle should be but the probability is non-zero at *every* other point.
 - Sometimes the α particle will find itself at $r > r_0!$

The Inverse Problem

- We are interested in the inverse of the Po case.
 We want to break the barrier coming in.
 Classically there is no opportunity for the penetration but in QM there is a finite probability of the event; that is, the incoming particle will sometimes find itself at r < r₀.
 - The closer you can get the incoming particle to the nuclei to be penetrated the better the probability.
 - Thus penetration is favored in a fast moving particle.

Miniumum Mass for Stars

Barrier Potential $Z_1 Z_2 e^2$

- "Low Temperatures" favor penetration of low Z species
 - Low mass objects have lower values of T
 Only H can be burnt
- Core Temperature T_c > T_I (ignition) for a particular fuel
- If we have a uniform density: ρ = M/4πR³
 T_c ≃ (Gmµm_H) / (5kR) (Hydrostatic Ideal Gas)

The Condition for Burning

At high density matter becomes degenerate and the thermal energy of a photon must be less than the Fermi energy:

$$kT < \varepsilon_{F,e} = \frac{p_{F,e}^2}{2m_e} = \frac{\hbar^2 (3\pi n_e)^{3/2}}{2m_e}$$

Charge neutrality must be maintained: $n_e = n_p = \rho/m_H$ from which one may obtain:

$$\frac{m_H}{\rho} > \frac{\hbar^3}{\left(2m_e kT\right)^{3/2}}$$

The Minimum Mass

The Inter-nuclear Separation is:

$$\left(\frac{m_{H}}{\rho}\right)^{\frac{1}{3}} > \frac{\hbar}{\left(2m_{e}kT\right)^{1/2}}$$

Note that 2m_ekT is the thermal wavelength of an electron
 One can then obtain:

$$\mu^{\frac{3}{2}} \left(\frac{M}{M_{Sun}} \right) > 2.9(10^{-7}) T^{\frac{3}{4}}$$

For H (μ = ½) at T = 10⁷: M/M_{SP} > 0.14
 A more detailed argument says: M/M_{SP} > 0.05 to 0.08

Energy Release

The Process is characterized by $\mathcal{E} = \mathcal{E}_0 \rho^a T^n$

Units: ergs gm⁻¹ sec⁻¹
ε₀: Constant depending on the reaction
a: A constant which is ~ 1
n: 4 for H burning (pp cycle) and 30 for C burning

Reaction Networks

Energy release: photons (hv) + neutrinos

- Only the photons contribute to the energy generation
- Neutrinos are lost to the system
- Note that the photon generation can be after the reaction: specifically in ee⁺ annihilation
- A reaction network is a specific set of nuclear reactions leading to either energy production and/or nucleosynthesis.
 - pp hydrogen burning is one such network
 - CNO hydrogen burning is another
 - 3α (He burning) is another

The pp Chain

Process: PPI

- Initial Reaction: $p + P \rightarrow D + e^+ + v_e$
 - Energy = 1.44207 MeV
 - Only D remains as the position undergoes immediate pair annihilation producing 511 KeV. The e is lost energy to the system.
 - This can be written: $H^1(p,\beta^+v_e) D$
- Next: $p + D \rightarrow He^3 + \gamma$
 - Produces 5.49 MeV
 - At $T < 10^7$ K this terminates the chain

PPI continued

Lastly (at T > 10⁷ K): He³ + He³ → He⁴ + 2p
This produces 12.86 MeV
Total Energy for PPI: 2(1.18 + 5.49) + 12.86 = 26.2 MeV
Reaction 1 & 2 must occur twice

The neutrino in reaction 1 represents 0.26 MeV

PPII

He⁴ must be present and T > $2(10^7)$ K

- He³ + He⁴ → Be⁷ + γ
 Be⁷ + p → B⁸ + γ
 B⁸ → Be⁸ + e⁺ + v_e
 Be⁸ → 2He⁴
 1.59 MeV
 0.13 MeV
 10.78 MeV (7.2 in v_e)
 0.095 MeV
- The total energy yield is 19.27 MeV (including the first two reactions of PPI.
- Note that when Be or B are made they end up as He.

PPIII

A Minor Chain as far as probability is concerned.

Start with the Be⁷ from PPII
First reaction is Be⁷ + e⁻ → Li⁷ + v
Next Li⁷ + p → 2He⁴
This is the infamous neutrino that the Davis experiment tries to find.
Note that we cannot make Li either!

Timescales for the Reactions

Reactants	Halflife (Years)		
p + p	7.9(10 ⁹)		
p + D	4.4(10-8)		
$He^3 + He^3$	$2.4(10^5)$		
$\mathrm{He^{3}+He^{4}}$	9.7(10 ⁵)		
$Be^7 + p$	6.6(10 ¹)		
B ⁸ and Be ⁹ decay	3(10-8)		

Nucleur Reaction Rates

- Energy Generation Depends on the Atomic Physics only (On A Per Reaction Basis)
 - Basics: $4H \rightarrow He^4$
 - $4H = 4(1.007825 \text{ AMU}) = 6.690594(10^{-24}) \text{ gm}$
 - $\text{He}^4 = 4.00260 \text{ AMU} = 6.645917(10^{-24}) \text{ gm}$
- OMass = $4.4677(10^{-26})$ gm
 - $E = mc^2 = 4.01537(10^{-5}) \text{ ergs} = 25.1 \text{ MeV} (vs 26.2 \text{ MeV }?!)$
- Mass Excess = $OM = M Am_H$
- Reactions can be either exothermic or endothermic
 - Burning Reactions that produce more tightly bound nuclei are exothermic; ie, the reactions producing up to the iron peak.

Conservation Laws

Electric Charge
Baryon Number
p = n = 1
e = v = 0
Spin

The Units in $\varepsilon = \varepsilon_0 \rho^a T^n$

ε = ergs g⁻¹ s⁻¹ = g cm² s⁻² g⁻¹ s⁻¹ = cm² s⁻³
Assume a = 1 ∴ ρ^a = ρ : g cm⁻³
So cm² s⁻³ = ε₀ g cm⁻³ Kⁿ
ε₀ = (cm² s⁻³)/(g cm⁻³ Kⁿ) = (cm²/g) cm³ s⁻³ K⁻ⁿ
So how do we get ε₀?
Bowers & Deming Section 7.3
Clayton

Reaction Cross Section

\square Cross Section σ

- Let X = Stationary nucleus
- Let a = Moving nucleus
- Probability of a reaction per unit path length is $n_X \sigma$ where n_X is the density of particle X

■ $n_X \sigma = \# \text{ cm}^{-3} \text{ cm}^2 = \# \text{ cm}^{-1}$ (This is 1 / MFP)

- MFP = $(1 / n_X \sigma)$ = vt where t = time between collisions and v = speed of particles (the one(s) that are moving).
- $t = 1 / n_X \sigma v$ or Number of Reactions (per Stationary particle/s) = $n_X \sigma v$

• Total number of reactions: $r = n_a n_X v \sigma(v)$

- $r = cm^{-3} cm^{-1} cm s^{-1} = \# / (cm^3 s)$
- The cross section must be a function of v

Integrate Over Velocity

There actually exist a range of velocities f(v) so we must integrate over all velocities:

 $r = n_a n_X \int v \sigma(v) f(v) dv \equiv n_a n_X < \sigma v >$

The total energy is then rQ/ρ.
r = reaction rate in # / (cm³ s)
Q = energy produced per reaction
ρ = density g cm⁻³
rQ/ρ = cm⁻³ s⁻¹ g⁻¹ cm³ ergs = ergs s⁻¹ g⁻¹ = ε = ε₀ρ^aTⁿ

Penetration Factor

The penetration factor is defined as:

$$e^{-4\pi^{2}aZ_{1}Z_{2}\left(\frac{mc^{2}}{2E}\right)^{\frac{1}{2}}} \equiv e^{\frac{-b}{E^{1/2}}}$$

$$a = \frac{e^{2}}{hc}$$

$$b = \left[-4\pi^{2}aZ_{1}Z_{2}\left(\frac{mc^{2}}{2}\right)^{\frac{1}{2}}\right]$$

m is the reduced mass of the system

The Cross Section We write the cross section thus: $\sigma(E) = \frac{S(E)}{E}e^{\frac{-b}{E^{1/2}}}$

- S(E) is the "area" of the reaction set by the deBroglie wavelength of the particle
- S(E) varies slowly with E
- Now change variable to E and rewrite <v>

 $<\sigma v >= \int_{0}^{\infty} \sigma(E)v(E)f(E)dE$ assume f(e)dE to be Maxwellian $<\sigma v >= \left(\frac{8}{m\pi}\right)^{\frac{1}{2}} (kT)^{-3/2} \int_{0}^{\infty} S(E)e^{\left(-\frac{E}{kT} - \frac{b}{\sqrt{E}}\right)} dE$

Gamow Peak

- <σv> is the combination of two pieces:
 - e^{-E/kT} (Maxwellian) decreases with increasing E and represents the decreasing number of particles with increasing E.
 - e^{-b/SQRT(E)} (Penetration) increases with E and represents the increasing probability of a reaction with E [speed].
- E₀ is the peak energy for <σV> and can be thought of as the most effective energy for that T

Analytically

- S(E) varies slowly with E and its primary contribution is at E₀ ==> want S(E₀)
- Next approximate the Peak by a Gaussian and you get:
 - See Clayton For the Approximation formulae

$$<\sigma v>=\left(\frac{8}{m\pi}\right)^{\frac{1}{2}}\frac{S(E_0)}{(kT)^{3/2}}\frac{4}{\sqrt{3}}\left(E_0kT\right)^{\frac{1}{2}}\frac{\sqrt{\pi}}{2}e^{-\frac{3E_0}{kT}}$$

Nuclear Burning Stages and Processes

- Main Sequence Energy Generation
- pp Hydrogen Burning
 - pp cycle: $H(H,e^+v_e) D(H,\gamma) He^3$ then $He^3 (He^3,2p) He^4$
 - Slowest Reaction is: $H(H,e^+v_e) D$

• The cross section for the above has never been measured. It also depends on the weak interaction which governs β decay : $p \rightarrow n + e^+ + v_e$

- For pp T ~ 10⁷ K so this is the energy source for the lower main sequence (mid F - 2 M₃ and later)
 T4 C = 1
- $\varepsilon = \varepsilon_0 \rho T^4$ for the pp cycle

Reactions of the PP Chains

Reactions of the PP Chains

Reaction	Q (MeV)	Average v Loss (MeV)	S ₀ (KeV barns)	dS/dE (barns)	В	τ (years) [†]
$H(p,\beta^+\nu)D$	1.442	0.263	3.78(10 ⁻²²)	4.2(10 ⁻²⁴)	33.81	7.9(10 ⁹)
D(p, y)He ³	5.493		2.5(10-4)	7.2(10-6)	37.21	4.4(10-8)
He ³ (He ³ ,2p)He ⁴	12.859		5.0(10 ³)		122.77	2.4(10 ⁵)
$\mathrm{He}^{3}(\alpha,\gamma)\mathrm{Be}^{7}$	1.586		4.7(10 ⁻¹)	-2.8(10-4)	122.28	9.7(10 ⁵)
Be ⁷ (e ⁻ ,v)Li ⁷	0.861	0.80				3.9(10 ⁻¹)
$Li^7(p, \alpha)He^4$	17.347		1.2(10 ²)		84.73	1.8(10 ⁻⁵)
$Be^{7}(p,\gamma)B^{8}$	0.135		4.0(10 ⁻²)		102.65	6.6(10 ¹)
$B^8(\beta^+\nu)Be^{8*}(\alpha)He^4$	18.074	7.2				3(10-8)

[†] Computed for X = Y = 0.5, $\rho = 100$, $T_6 = 15$

The CNO Cycle

FIG. 1.—CNO Tri-cycle: Instead of ¹⁷O returning to ¹⁴N via ¹⁷O(p, α), there may be a competive path via ¹⁷O(p, γ)¹⁸F($e^+\nu$)¹⁸O (p, α)¹⁵N.

The CNO Cycle

• Effective at $T > 2(10^7)$ K

- Mass > 2 M_{\leq} (O through early F stars)
- The main energy generation is through the CN Cycle
- The first two reactions are low temperature reactions. They produce ¹³C in zones outside the main burning regions. This material is mixed to the surface on the ascent to the first red-giant branch: ¹²C/¹³C is an indicator of the depth of mixing not a signature that the CNO process has been the main energy generator.
- ¹⁴N is produced by incomplete CN burning (and is the main source of that element).
- The cycle when complete is catalytic.
- $\varepsilon = \varepsilon_0 \rho T^{16}$ for the CNO cycle

CNO Reactions

Reactions of the CNO Cycle						
Reaction	Q (MeV)	Average v Loss (MeV)	S ₀ (KeV barns)	dS/dE (barns)	В	Log(τρX _H) (years) [†]
$^{12}C(p,\gamma)^{13}N$	1.944		1.40	4.261(10 ⁻³)	136.93	2.30
$^{13}N(\beta^{+}\nu)^{13}C$	2.221	0.710				
$^{13}C(p,\gamma)^{14}N$	7.550		5.50	1.34(10-2)	137.20	1.70
$^{14}N(p,\gamma)^{15}O$	7.293		2.75		152.31	4.21
$^{15}\text{O}(\beta^+,\nu)^{15}\text{N}$	2.761	1.00				
$^{15}N(p,\alpha)^{12}C$	4.965		5.34(10 ⁴)	8.22(10 ²)	152.54	-0.21
$^{15}N(p,\gamma)^{16}O$	12.126		27.4	1.86(10 ¹)	152.54	
$^{16}O(p,\gamma)^{17}F$	0.601		10.3	-2.81(10 ⁻²)	166.96	5.85
${}^{17}F(\beta^{+}\nu){}^{17}O$	2.762	0.94				
$^{17}O(p,\alpha)^{14}N$	1.193	Resonant Reaction		167.15	3.10	

† Computed for $T_6 = 25$

Pre-Main Sequence Nuclear Sources

⁶Li (H,⁴He) ³He
⁷Li (H,⁴He) ⁴He
¹⁰B (²H,⁴He) 2⁴He
⁹Be (2H,2⁴He) ³He
D (H,γ) ³He

 These are parts of the pp cycle and destroy any of these elements that are present. But these species still exist! How do they survive?

Post-Main Sequence Processes

The Triple α Process

■ Mass Criteria: $M/M_{\odot} > 0.5$

 \blacksquare T_c $\approx 10^8$ K

- Summary: $3 {}^{4}\text{He} \rightarrow {}^{12}\text{C} + \gamma$ Q = 7.27 MeV
- Details: ⁴He (⁴He,) ⁸Be (⁴He,) ¹²C
 - ⁴He (⁴He,) ⁸Be is endothermic
 - The third ⁴He must be present when ⁴He (⁴He,) ⁸Be occurs or Be⁸ → 2He⁴ occurs (Timescale is 2.6(10⁻¹⁶) s)
 - This is a three body collision! It happens because ¹²C has an energy level at the combined energy of ⁸Be + ⁴He. This is a resonance reaction.

•
$$\varepsilon = \varepsilon_0 \rho^2 T^{30}$$
 for 3α

Other Common Reactions

These happen along with 3α

A Very Important Reaction: ¹²C(⁴He,)¹⁶O
 This reaction has a very high rate at the temperatures and densities of 3α
 After 3α one has C and O.
 ¹⁴N (⁴He,e⁺v_e) ¹⁸O (⁴He,) ²²Ne
 This burns to completion under 3α conditions so all N is destroyed.

- C is the next fuel it is the lowest Z nuclei left after 3α
 - $T_c > 6(10^8) \text{ K}$
 - $\varepsilon = \varepsilon_0 \rho T^{32}$ for carbon burning

Oxygen Burning

Neutrino Energy Loss

Cross Section is σ ~ 10⁻⁴⁴ cm²
Interaction Probability ≃ σn_bR
n_b = baryon number
R = radius of star
Neutrinos are a source of energy loss but do not contribute to the pressure

Davis Experiment

- $\square_{17}Cl^{37} + v_e \rightarrow {}_{18}Ar^{37} + e^{-1}$
- The threshold energy is 0.81 MeV for the reaction.
- This is a "superallowed" transition as the quantum numbers of excited ₁₈Ar³⁷ at 5.1 MeV are the same as the ground state in ₁₇Cl³⁷.
 - We would expect to be able to detect a single event at E > 5.1 MeV
- Primary v_e sources in the Sun are the pp and CN cycles.

Sources of Solar Neutinos

Depation	Neutrino	Relative	
Reaction	Mean	Max	Importance
$p + p \rightarrow D + e^+ + v_e$	0.26	0.42	6.0
$p + p + e^- \rightarrow D + v_e$	1.44	1.44	1.55(10-2)
$Be^7 + e^- \rightarrow Li^7 + v_e$	0.86	0.86	0.4
$B^8 \rightarrow Be^{8*} + e^+ + v_e$	7.2	14.0	4.5(10-4)
$N^{13} \rightarrow C^{13} + e^+ + v_e$	0.71	1.19	3.7(10-2)
$O^{15} \rightarrow N^{15} + e^+ + v_e$	1.00	1.70	$2.6(10^{-2})$

Experimental Results

- The only neutrino the Davis experiment can see is the B⁸ neutrino - the least significant neutrino source in the chains.
- Original Predicted Rate was 7.8 SNU with a detected rate of 2.1 ± 0.3 SNU
- GALLEX tests the p + p neutrino production: its rate is about 65% of the predicted values.
 - Better solar models are cutting the predicted rates
 Diffusion
 - Convection
 - Better opacities