Static Stellar Structure Static Stellar Structure

Static Stellar Structure Static Stellar Structure

Most of the Life of A Star is Spent in Equilibrium

 \blacksquare Evolutionary Changes are generally slow and can usually be handled in a quasistationary manner \blacksquare We generally assume: **Hydrostatic Equilibrium Thermodynamic Equilibrium The Equation of Hydrodynamic Equilibrium**

$$
\rho \frac{d^2 r}{dt^2} = -\frac{Gm(r)\rho}{r^2} - \frac{\partial P}{\partial r}
$$

Limits on Hydrostatic Equilibrium Limits on Hydrostatic Equilibrium

If the system is not "Moving" - accelerating in reality - then d^2r/dt^2 = 0 and then one recovers the equation of hydrostatic equilibrium: **If** $\frac{\partial P}{\partial r} \sim 0$ then which is just the freefall condition for which the time scale is t_{ff} \simeq (GM/R³)^{-1/2}

2 $Gm(r)\rho$ ∂P dP r^2 ∂r *dr* ρ ∂ $\widehat{\mathscr{O}}$ − − − − − = −− =

2 dt^2 r^2 $Gm(r)$ $\frac{1}{2}$ [−]

Dominant Pressure Gradient Dominant Pressure Gradient

 \blacksquare When the pressure gradient dP/dr dominates one gets $(r/t)^2 \sim P/\rho$ **This implies that the fluid elements must** move at the local sonic velocity: $c_s = ∂P/∂ρ$. \blacksquare When hydrostatic equilibrium applies \blacksquare $\mathsf{V} << \mathbf{c}_{\mathrm{s}}$ $\mathbf{t}_{\rm e}$ >> $\mathbf{t}_{\rm ff}$ where $\mathbf{t}_{\rm e}$ is the evolutionary time scale

Hydrostatic Equilibrium Hydrostatic Equilibrium

 \blacksquare Consider a spherical star

ri
M

- Shell of radius r, thickness dr and density $\rho(r)$
- Gravitional Force: \downarrow (Gm(r)/r²) $4\pi r^2 \rho(r) dr$
- \blacksquare Pressure Force: \uparrow 4r²dP where dP is the pressure difference across dr
- Equate the two: $4\pi r^2 dP = (Gm(r)/r^2) 4\pi r^2 \rho(r) dr$ $r^2dP = Gm(r) \rho(r)dr$

 $dP/dr = -\rho(r)(Gm(r)/r^2)$

 \blacksquare The - sign takes care of the fact that the pressure decreases outward.

Mass Continuity Mass Continuity

- $m(r) = \text{mass within a shell} = m(r) = \int_0^r 4\pi r'^2$ $(r) = \int_0^1 4 \pi r'^2 \rho(r')$ $m(r) = \int_0^r 4\pi r'^2 \rho(r') dr$ $=\int_0^r 4\pi r'^2 \rho(r') dr'$
- \blacksquare This is a first order differential equation which needs boundary conditions
	- \blacksquare We choose P_c = the central pressure.
- \blacksquare Let us derive another form of the hydrostatic equation using the mass continuity equation.
	- Express the mass continuity equation as a differential: dm/dr = $4\pi r^2 \rho(r)$.
	- \blacksquare Now divide the hydrostatic equation by the masscontinuity equation to get: $dP/dm = Gm/4\pi r^4(m)$

The Hydrostatic Equation in Mass Coordinates Coordinates

- \blacksquare dP/dm = Gm/4 $\pi r^4(m)$
	- **The independent variable is m**
	- \blacksquare r is treated as a function of m
	- \blacksquare The limits on m are:
	- \blacksquare 0 at $r = 0$
	- \blacksquare M at $r = R$ (this is the boundary condition on the mass equation itself).
- Why?
	- \blacksquare Radius can be difficult to define
	- \blacksquare Mass is fixed.

The Central Pressure The Central Pressure

 \blacksquare Consider the quantity: $P + Gm(r)^{2}/8\pi r^{4}$

 \blacksquare Take the derivative with respect to r:

$$
\frac{d}{dr}\left[P + \frac{Gm(r)^2}{8\pi r^4}\right] = \frac{dP}{dr} + \frac{Gm(r)}{4\pi r^4}\frac{dm}{dr} - \frac{Gm(r)^2}{2\pi r^5}
$$

 \blacksquare But the first two terms are equal and opposite so the derivative is $-Gm^2/2r^5$.

 \blacksquare Since the derivative is negative *it must decrease outwards*.

At the center m²/r⁴ \rightarrow 0 and P = P_c. At r = R P = 0 therefore $\rm P_c$ > $\rm GM^{2}/8\pi R^{4}$

The Virial Theorem Theorem

$$
\frac{dP}{dm} = -\frac{mG}{4\pi r(m)^4}
$$

$$
4\pi r^3 \frac{dP}{dm} = -\frac{mG}{r}
$$

$$
\frac{d}{dm}(4\pi r^3 P) - 4\pi r^2 3P \frac{dr}{dm} = -\frac{mG}{r}
$$

$$
(4\pi r^3 P)|_0^M - \int_0^M \frac{3P}{\rho} dm = -\int_0^M \frac{mG}{r} dm
$$
Remember: $4\pi r^2 r dr = dm$

The Virial Theorem Theorem

- **1** The term $(4\pi r^3 P)|_0^M$ is 0: r(0) = 0 and P(M) = 0
- **Remember that we are considering P,** ρ **, and r as** variables of m
- For a non-relativistic gas: $3P/ = 2$ * Thermal energy per unit mass.

$$
\therefore \int_0^M \frac{3P}{\rho} dm = 2U \quad \text{for the entire star}
$$
\n
$$
\therefore \int \frac{GM}{r} dm = \Omega \quad \text{the gravitational binding energy}
$$

The Virial Theorem Theorem

\blacksquare -2U = Ω

- \Box 2U + Ω = 0 Virial Theorem
- \blacksquare Note that $E = U + \Omega$ or that $E+U = 0$
- \blacksquare This is only true if "quasistatic." If hydrodynamic then there is a modification of the Virial Theorem that will work.

The Importance of the The Importance of the Virial Theorem Theorem

- **Let us collapse a star due to pressure** imbalance:
	- \blacksquare This will release $\Delta\Omega$
- \blacksquare If hydrostatic equilibrium is to be maintained the thermal energy must change by:
	- \blacksquare ΔU = -1/2 $\Delta \Omega$
- \blacksquare This leaves 1/2 $\Delta\Omega$ to be "lost" from star \blacksquare Normally it is radiated

What Happens? What Happens?

 \blacksquare Star gets hotter

 \blacksquare Energy is radiated into space

 \blacksquare System becomes more tightly bound: E decreases

 \blacksquare Note that the contraction leads to H burning (as long as the mass is greater than the critical mass).

An Atmospheric Use of Pressure An Atmospheric Use of Pressure

- \blacksquare We use a different form of the equation of hydrostatic equilibrium in an atmosphere.
- \blacksquare The atmosphere's thickness is small compared to the radius of the star (or the mass of the atmosphere is small compared to the mass of the star)
	- \blacksquare For the Sun the photosphere depth is measured in the 100's of km whereas the solar radius is 700,00 km. The photosphere mass is about 1% of the Sun.

Atmospheric Pressure Atmospheric Pressure

Geometry: Plane Parallel

- \blacksquare dP/dr = -Gm(r) ρ/r^2 (Hydrostatic Equation)
	- R \approx r and m(R) = M. We use h measured with respect to some arbitrary 0 level.
- \blacksquare dP/dh = gp where g = acceleration of gravity. For the Sun $log(g) = 4.4$ (units are cgs)
- Assume a constant T in the atmosphere. $P = n kT$ and we use $n = \rho/\mu m_H$ (μ is the mean molecular weight) so

$$
\mathbf{P} = \rho k \mathbf{T} / \mu \mathbf{m}_{\mathrm{H}}
$$

Atmospheric Pressure Continued Atmospheric Pressure Continued

Ш $P = \rho kT/\mu m_H$ \blacksquare $dP = -g \rho dh$ \Box $dP = -g P(\mu m_H/kT) dh$ \blacksquare Or $dP/P = -g(\mu m_H/kT) dh$

Integrate:
$$
P = P_0 e^{-\frac{gm_H \mu h}{kT}}
$$

$$
\rho = \rho_0 e^{-\frac{gm_H \mu h}{kT}}
$$

U Where: $P_0 = P$ and $p_0 = \rho$ at $h = 0$.

Scale Heights Scale Heights

 \blacksquare H (the scale height) is defined as kT / μ m_Hg \blacksquare It defines the scale length by which P decreases by a factor of e. \blacksquare In non-isothermal atmospheres scale heights are still of importance: \blacksquare H \equiv - (dP/dh)⁻¹ P = -(dh/d(lnP))

Simple Models Simple Models

To do this right we need data on energy generation and energy transfer but:

The linear model: $\rho = \rho_c(1-r/R)$ **Polytropic Model:** $P = K\rho^{\gamma}$ \blacksquare K and γ independent of r \blacksquare γ not necessarily $\mathtt{c}_{\rm p}/\mathtt{c}_{\rm v}$

The Linear Model The Linear Model

$$
\rho = \rho_c (1 - \frac{r}{R})
$$

$$
\frac{dP}{dr} = -\frac{Gm(r)}{r^2} \rho_c (1 - \frac{r}{R})
$$

 \blacksquare **Defining Equation** \blacksquare Put in the Hydrostatic Equation \blacksquare Now we need to deal with m(r)

An Expression for m(r)

$$
\frac{dm}{dr} = 4\pi r^2 \rho_c (1 - \frac{r}{R})
$$

$$
= 4\pi r^2 \rho_c - \frac{4\pi r^3 \rho_c}{R}
$$

$$
m(r) = \frac{4\pi r^3 \rho_c}{3} - \frac{\pi r^4 \rho_c}{R}
$$

Total Mass $M = m(R) = \frac{\pi R^3 \rho_c}{3}$
So $m(r) = M \left(\frac{4r^3}{R^3} - \frac{3r^4}{R^4}\right)$

Equation of Continuity

Integrate from 0 to r

Linear Model Linear Model

- We want a particular (M,R)
- $\rho_c = 3M/\pi R^3$ and take $\rm P_c = 1$ $P(\rho_c)$
- Substitute m(r) into the hydrostatic equation:

$$
\frac{dP}{dr} = \frac{\pi G}{r^2} \rho_c^2 \left(\frac{4r^3}{3} - \frac{r^4}{R} \right) \left(1 - \frac{r}{R} \right)
$$

$$
= -\pi G \rho_c^2 \left(\frac{4r}{3} - \frac{7r^2}{3R} + \frac{r^3}{R^2} \right)
$$

So $P = P_c - \pi G \rho_c^2 \left(\frac{2r^2}{3} - \frac{7r^3}{9R} + \frac{r^4}{4R^2} \right)$

. *cwhere P is the central pressure*

The Pressure and Temperature Structure Structure

 \blacksquare The pressure at any radius is then:

$$
P(r) = \frac{5\pi}{36} G\rho_c^2 R^2 \left(1 - \frac{24r^2}{5R^2} + \frac{28r^3}{5R^3} - \frac{9r^4}{5R^4}\right)
$$

Ignoring Radiation Pressure:

$$
T = \frac{\mu m_H P}{k \rho}
$$

= $\frac{5\pi G \mu m_H}{36} \rho_c R^2 \left(1 + \frac{r}{R} - \frac{19r^2}{5R^2} + \frac{9r^3}{5R^3}\right)$

Static Stellar Structure

Polytropes Polytropes

 \blacksquare P = K ρ^{γ} which can also be written as \blacksquare P = $K\rho^{(n+1)/n}$ \blacksquare N \equiv Polytropic Index **n** Consider Adiabatic Convective Equilibrium \blacksquare Completely convective \blacksquare Comes to equilibrium \blacksquare No radiation pressure **Then P** = K ρ ^{γ} where γ = 5/3 (for an ideal monoatomic gas) ==> $n = 1.5$

Gas and Radiation Pressure Gas and Radiation Pressure

 $\mathbf{P}_{\rm g} = (\rm N_0 \rm k/\mu) \rho T = \beta P$ $P_r = 1/3$ a $T^4 = (1 - \beta)P$ $P = P$ $P_{\alpha}/\beta = P_{r}/(1-\beta)$ \blacksquare 1/β(N₀k/μ)ρT = 1/(1-β) 1/3 a T⁴ Solve for T: T³ = (3(1- β)/aβ) (N₀k/ μ) ρ T = ((3(1 - β)/aβ) (N₀k/μ))^{1/3} ρ^{1/3}

The Pressure Equation The Pressure Equation

$$
P = \frac{N_0 k}{\mu} \frac{\rho T}{\beta}
$$

$$
= \left[\left(\frac{N_0 k}{\mu} \right)^4 \frac{3}{a} \frac{1 - \beta}{\beta} \right]_0^{\frac{1}{3}} \rho^{\frac{4}{3}}
$$

 \blacksquare True for each point in the star If $\beta \neq f(R)$, i.e. is a constant then \blacksquare P = Kp^{4/3} \blacksquare n = 3 polytrope or $\gamma = 4/3$

The Eddington Standard Model n $=$ **3**

For n = 3 $\rho \propto T^3$

The general result is: $\rho \propto T^{n}$

- \blacksquare Let us proceed to the Lane-Emden Equation
- \Box $\rho \equiv \lambda \phi^n$
	- \blacksquare λ is a scaling parameter identified with ρ_c the central density density
	- \blacksquare φ ⁿ is normalized to 1 at the center.
	- \blacksquare Eqn 0: P = Kρ^{(n+1)/n} = Kλ^{(n+1)/n}φⁿ⁺¹
	- **Eqn** 1: Hydrostatic Eqn: dP/dr = -Gpm(r)/r²
	- **Eqn 2: Mass Continuity: dm/dr =** $4\pi r^2 \rho$

Working Onward Working Onward

Solve 1 for
$$
m(r)
$$
: $m(r) = -\frac{r^2}{\rho G} \frac{dP}{dr}$
\nPut $m(r)$ in 2: $\frac{1}{r^2} \left[\frac{d}{dr} \left(\frac{r^2}{\rho} \frac{dP}{dr} \right) \right] = -4\pi G \rho$
\n
$$
\frac{dP}{dr} = K \lambda^{\frac{n+1}{n}} (n+1) \phi^n \frac{d\phi}{dr}
$$
\n
$$
\frac{1}{r^2} \left[\frac{d}{dr} \left(\frac{r^2}{\lambda \phi^n} K \lambda^{\frac{n+1}{n}} (n+1) \phi^n \frac{d\phi}{dr} \right) \right] = -4\pi G \lambda \phi^n
$$

Simplify Simplify

$$
\frac{1}{r^2} \left[\frac{d}{dr} \left(\frac{r^2}{\lambda \phi^n} K \lambda^{\frac{n+1}{n}} (n+1) \phi^n \frac{d\phi}{dr} \right) \right] = -4\pi G \lambda \phi^n
$$

$$
K \lambda^{\frac{1}{n}} (n+1) \frac{1}{r^2} \left[\frac{d}{dr} \left(r^2 \frac{d\phi}{dr} \right) \right] = -4\pi G \lambda \phi^n
$$

$$
K \lambda^{\frac{1-n}{n}} (n+1) \frac{1}{4\pi G} \frac{1}{r^2} \left[\frac{d}{dr} \left(r^2 \frac{d\phi}{dr} \right) \right] = -\phi^n
$$

$$
Define \ a \equiv \left[\frac{K\lambda^{\frac{1-n}{n}}(n+1)}{4\pi G}\right]^{\frac{1}{2}}
$$

$$
\xi \equiv \frac{r}{a} \quad so \quad ad \xi = dr
$$

So:
$$
\frac{1}{\xi^2} \frac{d}{d\xi} \left(\xi^2 \frac{d\phi}{d\xi} \right) = -\phi^n
$$

Static Stellar Structure

The Lane The Lane-Emden Equation Equation 2 2 $1 d \left| \begin{array}{c} 2 d \phi \end{array} \right|$ in $d\mathcal{E}$ $\begin{bmatrix} 1 & d \end{bmatrix}$ $\frac{1}{\xi^2} \frac{d}{d\xi} \left(\xi^2 \frac{d\phi}{d\xi} \right) = -\phi'$

 \blacksquare Boundary Conditions: Boundary Conditions:

E Center ξξ = 0; φ = 1 (the function); $d\varphi/d \xi = 0$

Solutions for $n = 0, 1, 5$ exist and are of the form:

$$
\bullet \quad \varphi(\xi) = C_0 + C_2 \xi^2 + C^4 \xi^4 + \dots
$$

 \mathbb{R}^2 $= 1 - (1/6) \xi^2 + (n/120) \xi^4 - \dots$ for $\xi = 1$ (n>0)

For n \leq 5 the solution decreases monotonically and $\varphi \rightarrow 0$ at some value ξ_1 which represents the value of the boundary \bar{y} level.

General Properties General Properties

 \blacksquare For each n with a specified K there exists a family of solutions which is specified by the central density. **For the standard model:**

1

$$
K = \left[\left(\frac{N_0 k}{\mu} \right)^4 \frac{3}{a} \frac{1 - \beta}{\beta^4} \right]^3
$$

 \blacksquare We want Radius, m(r), or m(ξ) **Central Pressure, Density** \blacksquare **Central Temperature**

Radius and Mass Radius and Mass

 $R = a \xi_1$ $rac{1}{2}$ $rac{1-n}{\lambda^{2n}}$ ξ_1 2 $M(\xi) = \int_0^{a\xi} 4\pi r^2 \rho dr$ 3 \degree 1 μ ϵ 2 0 $\frac{u}{2} \frac{d}{d \varepsilon}$ ξ^2 3 η σ α β ϵ 2 $\pmb{0}$ $(n+1)$ 4 4 $1 d \left| \begin{array}{c} 2 d \phi \end{array} \right|$ *n* $(\xi) = -4$ *n n* a^3 $\hat{}$ $\lambda \phi^n \xi^2 d$ $n+1$) K *G* $\frac{1}{\xi^2} \frac{d}{d\xi} \left(\xi^2 \frac{d\phi}{d\xi} \right) = -\phi'$ *d d* $M(\mathcal{E}) = -4\pi a^3 \lambda \left| \frac{\partial u}{\partial x} \right| \mathcal{E}^2 \stackrel{\alpha \gamma}{=} |d|$ $d\mathcal{E}$ \vert \vert \vert \vert \vert ξ ξ $\zeta(\xi) = -4\pi a^3 \lambda \int_0^{\xi} \frac{d}{d\xi} \left(\xi^2 \frac{d\phi}{d\xi} \right) d\xi$ λ 2n ξ_1 π $\zeta(\xi) = \int_0^{\infty} 4\pi r^2 \rho d\zeta$ $=4\pi a^3 \int$ $\lambda \phi^n \xi^2 d\xi$ − $=\left[\frac{(n+1)K}{4\pi G}\right]$ $\left(\frac{\xi^2}{d\xi}\right) = = -4\pi a^3 \lambda \int_0^{\infty} \frac{d\xi}{d\xi} \left(\frac{\xi^2}{d\xi} \right)$ ∫ ∫ ∫

$$
M(\xi) = -4\pi a^3 \lambda \int_0^{\xi} d\left(\xi^2 \frac{d\phi}{d\xi}\right)
$$

$$
= -4\pi a^3 \lambda \xi^2 \frac{d\phi}{d\xi}
$$

Now substitute for a and evaluate at $\xi = \xi_1$ (*boundary*)

$$
M = -4\pi \left[\frac{(n+1)K}{4\pi G} \right]^{\frac{3}{2}} \lambda^{\frac{3-n}{2n}} \left(\xi^2 \frac{d\phi}{d\xi} \right)_{\xi = \xi_1}
$$

The Mean to Central Density The Mean to Central Density 1 $\frac{3}{2}$ 3 $\frac{2}{2}$ $\frac{2}{2n}$ \leq \geq 2 ³ 4 $\sqrt{(n+1)K}^{\frac{3}{2}}$ $\frac{3(1-n)}{2n}$ \approx 3 1 $4\pi\left(\frac{(n+1)}{4\pi G}\right)$ 4 $\frac{1}{3}\pi R^3$ $\frac{4}{5}\pi \left(\frac{(n+1)}{1}\right)$ \sim 3 4 3 *d* $\rho_{_{c}}$ = λ *n n n n* $n+1$ *K* $\left|2\right|_2 \frac{3-n}{2n}$ $\left|0\right|_2$ d *M* $Q \sim 4\pi G$ $Q \sim d$ R^3 4 $(n+1)K$ *G* $\bar{\rho} = -\frac{3}{\xi_1} \lambda \left(\frac{d\phi}{d\xi} \right)_{\xi = \xi_1}$ $\xi = \xi_1$ $\pi \frac{(n+1)K}{4\pi} \left| \frac{2}{\lambda} \frac{2^{n}}{2n} \right| \xi^2 \frac{d\phi}{dx}$ πG $\int d\xi$ ρ πK $\frac{4}{3}\pi\left(\frac{(n+1)K}{1-\pi}\right)^2\lambda^{\frac{2(n+1)}{2n}}\xi_1^2$ π − = − $\int_{\mathcal{A}} \pi \left[\frac{(n+1)K}{2} \right]^{2} \frac{3-n}{2n} \left(\frac{2}{\varepsilon^{2}} d\phi \right)$ $-4\pi\left[\frac{(1+i)(1+i)(1+i)}{4\pi G}\right]$ λ^{2n} $\left(\frac{\xi^2}{d\xi}\right)$ = ⁼ $\left[\frac{(n+1)K}{4\pi G} \right]$ $=-\frac{1}{\xi_1}\lambda\left(\frac{\partial f}{\partial \xi}\right)$

113 *cd* $d\,\mathbf{\mathcal{E}}\,)_{\mathbf{\mathcal{E}}=\mathbf{\mathcal{E}}_1}$ $\overline{\rho}$ 3 | $d\phi$ ρ_c $\xi_1 d\xi$ = $\int d\phi$ $=-\frac{\varepsilon}{\xi_1}\left(\frac{\pi r}{d\xi}\right)$

1

=

The Central Pressure The Central Pressure

- **At the center** $\xi = 0$ and $\varphi = 1$ so $P_c = K\lambda^{n+1/n}$ **This is because P** = $K\rho^{n+1/n} = K\lambda^{(n+1)/n} \rho^{n+1}$
- \blacksquare Now take the radius equation:

$$
R = \left[\frac{(n+1)K}{4\pi G}\right]^{\frac{1}{2}} \lambda^{\frac{1-n}{2n}} \xi_1
$$

=
$$
\left[\frac{(n+1)\xi_1^2}{4\pi G}\right]^{\frac{1}{2}} \left[K\lambda^{\frac{1-n}{n}}\right]^{\frac{1}{2}}
$$

So
$$
K\lambda^{\frac{1-n}{n}} = \frac{4\pi G R^2}{n+1 \xi_1^2}
$$

Central Pressure Central Pressure

$$
P_c = K\lambda^{\frac{1-n}{n}}\lambda^2 = K\lambda^{\frac{1-n}{n}}\rho_c^2
$$

$$
= \frac{4\pi G R^2}{(n+1)\xi^2} \left[\frac{\xi_1}{3} \frac{1}{(d\phi/d\xi)} \right]_{{\xi_1}}^2 \overline{P}^2
$$

But
$$
M = \frac{4}{3}\pi R^3 \overline{P} \quad \text{so} \quad M^2 = \frac{16}{9}\pi^2 R^6 \overline{P}^2
$$

$$
P_c = \frac{4\pi G R^2}{(n+1)\xi^2} \left[\frac{\xi_1}{3} \frac{1}{(d\phi/d\xi)} \right]_{{\xi_1}}^2 \left[\frac{9M^2}{16\pi^2 R^6} \right]
$$

$$
= \frac{GM^2}{4\pi R^4 (n+1)} \left[\frac{1}{(d\phi/d\xi)} \right]_{{\xi_1}}^2
$$

Central Temperature Central Temperature

$$
P_g = \frac{N_0 k}{\mu} \rho_c T_c = \beta_c P_c
$$

which means

$$
T_c = \frac{\beta_c P_c \mu}{N_0 k \rho_c}
$$