Line Broadening and Opacity

Line Broadening and Opacity

Total Absorption Coefficient =κ_c + κ_l

Absorption Processes: Simplest Model Absorption Processes: Simplest Model

- – Photon absorbed from forward beam and reemitted in Photon absorbed from forward beam and reemitted in arbitrary direction arbitrary direction
	- **BUT:** this could be scattering!
- **Absorption Processes: Better Model**
	- –- The reemitted photon is part of an energy distribution characteristic of the local temperature

 \blacksquare Bv_v(T_c) > B_v(T₁)

" "Some" of $B_v(T_c)$ has been removed and $B_v(T_l)$ is less than $B_v(T_c)$ and has arbitrary direction.

Doppler Broadening

Non Relativistic: $Ov/v_0 = v/c$

П. The emitted frequency of an atom moving at v will be v': $v' = v_0 + Ov = v_0 + (v/c)v_0$

E The absorption coefficient will be:

$$
a_{\nu} = \frac{\pi e^2}{m_e c} f \frac{\Gamma}{4\pi^2} \frac{1}{(\nu' - \nu)^2 + \left(\frac{\Gamma}{4\pi}\right)^2}
$$

- П Where $v =$ Frequency of Interest
- $v' =$ Emitted Frequency
- $v_0 = \text{Rest Frequency}$

Total Absorption

Per atom in the unit frequency interval at v

 \blacksquare Multiply by the fraction of atoms with velocity v to v $+$ dv: The Maxwell Boltzman distribution gives this:

$$
\frac{dN}{N} = \sqrt{\frac{M}{2\pi kT}} e^{\frac{-M\mathbf{v}^2}{2kT}} d\mathbf{V}
$$

– –– Where $M = AM_0$ = mass of the atom (A = atomic weight and $\mathrm{M}_0^{}=1$ $\mathrm{AMU})$

Now integrate over velocity

$$
a_{v} = \frac{\pi e^2}{m_e c} f \frac{\Gamma}{4\pi^2} \int_{-\infty}^{\infty} \frac{\sqrt{\frac{M}{2\pi kT}} e^{\frac{-M\mathbf{v}^2}{2kT}}}{(\nu_0 + \frac{\mathbf{v}}{c}\nu_0 - \nu)^2 + \left(\frac{\Gamma}{4\pi}\right)^2} d\mathbf{v}
$$

This is a Rather Messy Integral This is a Rather Messy Integral $\frac{0}{2}$ V Doppler Equation $\frac{1}{4\pi}$ Gamma is the
 $\frac{4\pi}{4}$ $\rm 0$ $\rm 0$ $\rm 0$ 2 *kT* $(\Delta \nu)$ *^c Mcc* d **v** = $-d$ (Δ *v*) $\mathcal V$ Δ $\nu_{\rm o} =$ $\mathcal V$ Δ $\nu = \frac{\tau_0}{\nu}$ v $\mathcal V$ $\mathbf{v} = -d(\mathbf{\Delta})$ $\rm 0$ $\rm 0$ $\rm 0$ $\rm 0$ *y* $\boldsymbol{\mathcal{U}}$ *a* $\boldsymbol{\mathcal{V}}$ $\boldsymbol{\mathcal{V}}$ $\nu-\nu$ $|\mathcal{V}|$ δ $\mathcal T$ δ $\boldsymbol{\mathcal{V}}$ $=\frac{\Delta}{\Delta}$ − $=$ $\frac{\ }{\Delta}$, Γ = ′ $=$ $\overline{\Delta}$

Line Broadening and Opacity

Simplify! 2 2 Γ $\sqrt{\frac{1}{2}e^2}$ 2 *M kT* e^2 **c** Γ \int_0^∞ $\sqrt{\frac{M}{2\pi kT}}e$ πe^{-} \int_{0}^{∞} $\sqrt{2\pi}$ − ∞ **v**

Our Equation is Now Note that Ov_0 is a constant = (v_0/c) ($\sqrt{2kT/M}$) so pull it out What about dv: $dv = (c/v_0)d(Ov)$ e
Ma $\overline{y} = \overline{\text{Ov}}/\overline{\text{Ov}}_0$ T $dy = (1/Ov_0) d(Ov)$ $dv = (cOv_0/v_0)dy$ e
Ma So put that in 2 2^{2} 2^{2} 2^{2} $\int_{0}^{2} a^{2} + \Delta V_{0}^{2}(u - y)$ e^{-y} <u>d</u> $V_0^- a^- + \Delta V_0^- (u - y)$ $\int \frac{e^{-y}}{\Delta v_0^2 a^2 + \Delta v_0^2 (u - v)^2} dv$

Getting Closer 2 $c \t e^{-y}$

 $_{0}\Delta v_{0}$ ^J $a^{2}+(u-y)^{2}$ $\frac{d}{dx}$ $\frac{d}{dx}$ $V_0 \Delta V_0$ $a^2 + (u - y)$ $\frac{c}{\Delta V_0} \int \frac{e^{-y}}{a^2 + (u - v)}$

Constants: First the constant in the integral

$$
\left(\frac{M}{2\pi kT}\right)^{\frac{1}{2}} = \frac{1}{\sqrt{\pi}} \left(\frac{M}{2kT}\right)^{\frac{1}{2}} = \frac{1}{\sqrt{\pi}} \frac{v_0}{c\Delta v_0}
$$

So then:
$$
\frac{\pi e^2}{m_e c} f \frac{\Gamma}{4\pi^2} \frac{1}{\sqrt{\pi}} \frac{v_0}{c \Delta v_0} \frac{c}{v_0 \Delta v_0} = \frac{\pi e^2}{m_e c} f \frac{\Gamma}{4\pi^2} \frac{1}{\sqrt{\pi}} \frac{1}{\Delta v_0^2}
$$

$$
\delta' \equiv \frac{\Gamma}{4\pi} \quad \text{and} \quad a \equiv \frac{\delta'}{\Delta v_0} \quad \text{so}
$$

$$
\frac{\pi e^2}{m_e c} f \frac{1}{\pi \sqrt{\pi}} \frac{1}{\Delta v_0} \frac{\delta'}{\Delta v_0} = \frac{\pi e^2}{m_e c} f \frac{1}{\sqrt{\pi}} \frac{1}{\Delta v_0} \frac{a}{\pi} = \alpha_0 \frac{a}{\pi}
$$

Line Broadening and Opacity **Line Broadening and Opacity** 8

Continuing On

- \blacksquare Note the α_0 does not depend on frequency (except for v_0 = constant for any line; $\mathbf{O}v_0 =$ $(v_0/c)\sqrt{(2kT/M)}$). It is called the absorption coefficient at line center.
- \blacksquare The normalized integral $H(a,u)$ is called the Voigt function. It carries the frequency dependence of the line.

$$
H(a, u) = \frac{a}{\pi} \int \frac{e^{-y^2}}{a^2 + (u - y)^2} dy
$$

Pulling It Together The Line Opacity a

$$
\kappa_l = N \frac{\pi e^2}{m_e c} f \frac{1}{\sqrt{\pi}} \frac{1}{\Delta V_0} H(a, u) \left[1 - e^{\frac{-h\nu}{kT}} \right]
$$

Be Careful about the $1/\sqrt{\pi}$ as it can be taken up in the normalization of H(a,u).

The Terms

 \blacksquare a is the broadening term (natural, etc) – – $a = \delta' / Ov_0 = (\Gamma/4\pi) / ((v_0/c) \sqrt{(2kT/M)})$ \blacksquare u is the Doppler term – – $- u = v - v_0/((v_0/c)\sqrt{(2kT/M)})$ At line center $u = 0$ and α_0 is the absorption coefficient at line center so $H(a,0) = 1$ in this treatment. Note that different treatments give different normalizations.

Wavelength Forms

• Γ's are broadenings due to various mechanisms • ε is any additional microscopic motion which may be needed.

Simple Line Profiles

First the emergent continuum flux is:

$$
F_{\lambda}(0) = 2\int_0^{\infty} S_{\lambda}(\tau_{\lambda}) E_2(\tau_{\lambda}) d\tau_{\lambda}
$$

- \blacksquare The source function $S_\lambda(\tau_\lambda) = B_\lambda(\tau_\lambda)$.
- \blacksquare $E_2(\tau_\lambda)$ = the second exponential integral.
- П The total emergent continuum flux is:

$$
F'_{\lambda}(0) = 2 \int_0^{\infty} S'_{\lambda}(\tau_{\lambda} + \tau_l) E_2(\tau_{\lambda} + \tau_l) d(\tau_{\lambda} + \tau_l)
$$

 \blacksquare τ_λ refers to the continuous opacities and τ_1 to the line opacity

The Residual Flux $R(O\lambda)$

$$
R(\Delta \lambda) = \frac{2}{F_{\lambda}(0)} \int_0^{\infty} S'_{\lambda}(\tau_{\lambda} + \tau_l) E_2(\tau_{\lambda} + \tau_l) d(\tau_{\lambda} + \tau_l)
$$

 \blacksquare This is the ratioed output of the star – – $-$ 0 = No Light

 -1 = Continuum

We often prefer to use depths: $D(O\lambda) = 1 - R(O\lambda)$

The Equivalent Width

 \blacksquare Often if the lines are not closely spaced one works with the equivalent width:

$$
W_{\lambda} = \int_{-\infty}^{\infty} D(\Delta \lambda) d\Delta \lambda
$$

• W_{λ} is usually expressed in mÅ • $W_{\lambda} = 1.06(O\lambda)D(O\lambda)$ for a gaussian line. $O\lambda$ is the FWHM.

Curve of Growth

Line Broadening and Opacity Line Broadening and Opacity 16

The Cookbook

To Compute a Line You Need

- \blacksquare Model Atmosphere: ($\tau_R^{},$ T, $\rm P_{gas},$ $\rm N_e,$ $\rm K_R)$ \blacksquare Atomic Data
	- –– Wavelength/Frequency of Line
	- Excitation Potential
	- – $-\operatorname{gf}$
	- – $-$ Species (this specifies U(T) and ionization potential) potential)
- Abundance of Element (Initial)

What Do You Do Now

- τ_R , K_R : Optical depth and opacity are specified at some reference wavelength or may be Rosseland values.
- The wavelength of interest is somewhere else: λ
- So you need α_{λ} : You need T, N_e, and P_g and how to calculate f-f, bf, and b-b but in computing lines one does not add b-b to the continuous opacity.

 $\rm 0$ $\rm 0$ $\rm 0$ *R l l R* $R = \bigcup_{\Omega} R$ *R Rdl dl d* λ . $\lambda =$ JO τ λ λ τ_{λ} $\kappa_{\lambda} \rho_{\lambda}$ τ_R $\kappa_R \rho$ $\tau_{\alpha} = \int^{\tau_R} \frac{K_{\lambda}}{2} d\tau$ κ = = ∫ ∫ ∫

Next

- Use the Saha and Boltzmann Equations to get populations populations
- \blacksquare You now have τ_λ
- Now compute τ_1 by first computing α_1 and using (a, u, Ov_0) as defined before. Note we are using wavelength as our variable.

$$
\kappa_l(\tau_R) = N(\tau_R) \frac{\pi e^2}{m_e c} \frac{f}{\Delta v_0(\tau_R)} H(a, u) \left[1 - e^{\frac{-hc}{\lambda kT}} \right]
$$

$$
\tau_l = \int_0^l \kappa_l \rho dl
$$