Continuous Opacity Sources

Continuous Opacity Sources

Principal Sources:

- Bound-Bound Transitions
- Bound-Free
- Free-Free (Bremstralung)
- Electron Scattering (Thompson & Compton)
- Molecular Transitions
- We consider only H or H-Like cases
 - We will do this classically (and correct to the QM result)
 - Stars are mostly H (in one form or another).

Dominant Opacity Sources

Type of Star	Species	Type	
Cool Stars (G- M) of Normal Composition	H-	b-f	Dominant
Warmer A-F stars	H-	f-f	Secondary
	Η	b-f	Dominant
	Н	f-f	Secondary
Interiors and hottest stars	Η	f-f	

Caveats and Details

- At High Temperatures: $(1-e^{-h\nu/kT}) \rightarrow 0$ so all of the bb, bf, and ff sources go to 0!
- Electron scattering takes over (is always there and may be important).
 - Free-Free is not the same as electron scattering: Conservation of momentum says a photon cannot be absorbed by a free particle!

In principal we start with a QM description of the photon - electron interaction which yields the cross section for absorption/scattering of the photon of energy hv, call the cross section a_i(v).

The Opacity Is

The opacity (g/cm²) for the process is K_i(v) = n_ia_i(v)/ρ
n_i is the number density (#/cm³) of the operant particles
The subscript i denotes a process/opacity
The total opacity is

$$K_{total} = \sum K_i(v)$$

Compton Scattering

This process is important only for high energy photons as the maximum change is 0.024Å.
 Reference: Eisberg -- Fundamentals of Modern Physics p. 81 ff.

Electron Scattering Conditions Collision of an electron and a photon - Energy and Momentum Must be conserved In stellar atmospheres during photon-electron collisions the wavelength of the photon is increased (assume the $E_{electron} < Photon (hv)$) - At 4000Å: hv = 4.966(10⁻¹²) ergs $-\frac{1}{2}$ mv² < 5(10⁻¹²) ergs ==> v < 10⁸ cm/s - At 5000K $v_{RMS} = 6.7(10^5)$ cm/s - At 100000K $v_{RMS} = 3(10^6)$ cm/s

Thompson Scattering

Classical Electron Scattering

Reference: Marion - Classical Electromagnetic Radiation p. 272 ff
 Low Energy Process: v << c
 Energy Absorbed from the EM field is
 $\frac{dE}{dt} = \frac{2}{3} \frac{e^2}{c^3} a^2 \qquad (\#)$

a = acceleration of the electron: a = eE/m_e and E is the magnitude of the electric field.

Thompson Scattering

- Field Energy Density = $\langle E^2/4\pi \rangle$ (Time Average)
- Energy Flux Per Electron = $c < E^2/4\pi >$
- Now Take the Time Average of (#):

But that has to be the energy flux per electron times the cross section which is $\sigma_T c < E^2/4\pi$ >.

 $\left|\frac{dE}{dt}\right\rangle = \frac{2}{3}\frac{e^2}{c^3} < a^2 >$ $=\frac{2}{3}\frac{e^{2}}{c^{3}}\frac{e^{2}}{m_{o}^{2}}\langle\mathsf{E}^{2}$

The Thompson Cross Section

$$\sigma_T c \left\langle \frac{\mathsf{E}^{-2}}{4\pi} \right\rangle = \frac{2}{3} \frac{e^2}{c^3} \frac{e^2}{m_e^2} \left\langle \mathsf{E}^{-2} \right\rangle$$
$$\sigma_T = \frac{8\pi}{3} \left(\frac{e^2}{m_e c^2} \right)^2 = 6.65(10^{-25}) \ cm^2$$

At High Temperatures this breaks down: $T \ge 10^9 \text{ K}$

Continuous Opacity

Electron Scattering Opacity

K_e = σ_TN_e/ρ
 There is no frequency dependence! Scattering off other ions is unimportant:
 Cross Section Goes as (1/m)² so for ions (1/Am_H)² while for electrons it goes as (1/m_e)²
 Ratio: Ions/Electrons = (m_e/Am_H)² = (1/A(1840))² < 10⁻⁶

Rayleigh Scattering: σ_R

- Scattering of a low energy photon by a bound electron.
- Classically: Rayleigh scattering occurs when a photon of energy less than the atomic energy spacing is absorbed.
 - The electron then oscillates about the unperturbed energy level (harmonically).
 - The electron reradiates the same photon but remains in the same energy state.

The Rayleigh Cross-Section

The cross section is: σ = σ_T/(1-(v₀/v)²)²
Where hv is the photon energy
hv₀ is the restoring force for the oscillator
When v << v₀: σ_R = σ_T (λ₀/λ)⁴
Now since v << v₀ we have OE << kT
Which implies T ~ 1000 K for this process.

Free-Free Opacities

Absorption Events

Bremstralung

 Electron moving in the field of an ion of charge Ze emits or absorbs a photon:

Acceleration in field produces a photon of hv

De-acceleration in field consumes a photon of hv

- Consider the Emission Process
 - Initial Electron Velocity: v'
 - Final Electron Velocity: v
- Conservation of Energy Yields

 $\frac{1}{2} m_{e} v^{2} + hv = \frac{1}{2} m_{e} v^{2}$

Energy Considerations

Energy Absorbed: dE/dt = 2/3 (e^2/c^3) a^2 where $a = eE/m_e$ (a is the acceleration)

$$E = \int_{-\infty}^{\infty} \frac{dE}{dt} dt = \frac{2}{3} \frac{e^2}{c^3} \int_{-\infty}^{\infty} a^2 dt$$

Most energy is absorbed during the time t ④ b / v' when the electron is close to the ion

b is called the impact parameter

b is the distance of closest approach

Acceleration is $\sim Ze^2/m_eb^2$

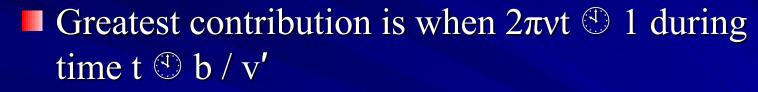
 $\blacksquare E_{abs} \textcircled{3} 2/3 (e^2/c^3) (Ze^2/m_eb^2)^2 (b / v')$

(
$$(Z^2e^6)/(m_e^2 c^3 b^3 v')$$
)

Frequency Dependence

Expand dE/dT in a Fourier Series

$$\frac{dE(v)}{dt} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{dE(t)}{dt} e^{-2\pi i v t} dt$$



- Therefore $2\pi v b / v' = 1$ or $2\pi v = v' / b$

- The energy emitted per electron per ion in the frequency range d is
 - $dq_v = 2\pi b db E_{abs}$ Why? $2\pi b db$ is an area!
 - $dq_v = energy emitted per electron per ion per unit frequency$

Bremstralung Energy

- Total Energy Emitted: $n_i n_e v' f(v') dv' dq_v$
 - $-n_i =$ Ion number density
 - $-n_e =$ electron number density (note that the electron flux is $n_e v'f(v')dv'$)

The reverse process defines the Bremstralung absorption coefficient a_v giving the absorption per ion per electron of velocity v from the radiation field.

In TE: Photon Energy Density = $U_{vp} = (4\pi/c)$ B_v(T)

The Absorption Coefficient

Net energy absorbed must be the product of the photon flux (photon energy = hv) $cU_{vn}dv$ and $n_i n_e f(v) dva_v$ and $(1 - e^{-hv/kT})$ or $- cU_{vp}dv n_i n_e f(v)dva_v (1-e^{-hv/kT})$ But in TE that must be equal to the emission: $- cU_{vp}dv n_{i}n_{e}f(v)dva_{v} (1-e^{-hv/kT}) = n_{i}n_{e} v'f(v')dv' dq_{v}$ $a_v = \pi/3 \ (Z^2 e^6) / (hc m_e^2 v^3 v)$ This is off by $4/\sqrt{3}$ from the exact classical result.

The Bremstralung Opacity

 $\kappa_{ff}(\nu) = \int_0^\infty n_i n_e f(V) a_\nu g_{ff}(\nu, V) dV$

V is v in the previous equations

This reduces to

 $\kappa_{\rm ff}(v) = 4/3 n_{\rm i}n_{\rm e} (2\pi/3m_{\rm e}kT)^{1/2} ((Z^2e^6)/(hc m_{\rm e}v^3))$ $g_{\rm ff}(v)$

g_{ff}(v) is the mean Gaunt factor and the result has been corrected to the exact classical result.

Bound Free Opacities

Transition from a Bound State to Continuum or Visa Versa

- This process differs from the free-free case due to the discrete nature of one of the states
- Nth Discrete State:

$$E_{n} = \frac{-m_{e}Z^{2}e^{4}}{2\hbar^{2}n^{2}} \equiv -\frac{I_{H}Z^{2}}{n^{2}}$$

Then the electron capture/ionization process must satisfy:

$$\frac{1}{2} m_{e} v^{2} - E_{n} = hv$$

Bound Free

V is the velocity of the ejected or absorbed electron.

Semiclassical treatment of electron capture

- Electron Initial Energy: $\frac{1}{2}$ m_ev² and is positive
- The energy decreases in the electric field as it accelerates seeing ion of charge Ze
- Q: Why does it loose energy as it accelerates?
- A: It radiates it away
- The energy loss per captured electron may be estimated as:

 $- dq_v = 2\pi bdbE_{abs} = (8\pi^2/3) ((Z^2e^6)/(m_e^2 c^3 v'^2 dv))$

Cross Section

The cross section for emission of photons into frequency interval dv is defined by

 $-hv d\sigma_v = dq_v = hv (d\sigma_v/dv) dv$

The final state is discrete so define σ_{cn} as the cross section for capture into state n (energy E_n) characterized by n in the range (n, n+dn) so that $d\sigma_v = \sigma_{cn} dn$. Then

 $- hv (d\sigma_v/dv) = hv \sigma_{cn} dn/dv$

- Solve for σ_{cn} and use $E_n = -I_H Z^2/n^2$ to get dn/dv

• Thus: $\sigma_{cn} = ((2I_H Z^2/n^2)/(h^2 v n^3))(dq_v/dv)$

= $(32/3) \pi^4 ((Z^2 e^{10})/(m_e c^3 h^4 v^2 v n^3))$

Photoionization

The reverse process is related by detailed balance Let σ_{vn} = photoionization cross section The number of photons absorbed of energy hv with the emission of electrons of energy $\frac{1}{2}m_{e}v^{2}$ - E_n from the nth atomic state is $-(cU_{vp}/hv) dv \sigma_{vn} N_n (1-e^{-hv/kT})$ $-N_n$ is the number of atoms in state n The reverse process: the number of electrons with initial velocities v captured per second into state n is $N_i \sigma_{cn} n_e v f(v) dv$

State Population

The Boltzmann Equation for the system is:

$$\frac{N_n}{N_1} = \frac{g_n}{g_1} e^{\frac{-I_H Z^2 (1 - \frac{1}{n^2})}{kT}}$$

where $g_1 = 2$ and $g_n = 2n^2$ (H-like ions) and the Saha equation is

$$\frac{N_{i}N_{e}}{N} = 2\frac{g_{i}}{U_{I}} \left(\frac{2\pi m_{e}kT}{h^{2}}\right)^{3/2} e^{\frac{-I_{H}Z^{2}}{kT}}$$

Detailed Balance says:

$$(cU_{vp}/hv)dv\sigma_{vn}N_n(1-e^{-hv/kT}) = N_i\sigma_{en}n_evf(v)dv$$

Continuous Opacity

The Bound Free Coefficient

We assume

- Maxwellian distribution of speeds
- Boltzmann and Saha Equations

$$\sigma_{vn} = (g_i/g_n) (m_e vc/hv)^2 \sigma_{cn}$$

We assume the Z-1 electrons in the atom do not participate, set $g_i = 1$, and correct for QM then

$$\sigma_{\nu n} = \frac{64\pi^4}{3\sqrt{3}} \frac{m_e Z^4 e^{10}}{h^6 c \nu^3 n^5} g_{bf}(\nu, n)$$

Limits and Conditions

Photon <u>must</u> have hv > E_n

 σ = 0 for hv < En (= I_HZ²/n²)

 Recombination

 Levels coupled to v by bound free processes have
 E_n for n > n* where n* = (I_HZ²/hv)^{1/2}

 Total Bound Free Opacity:

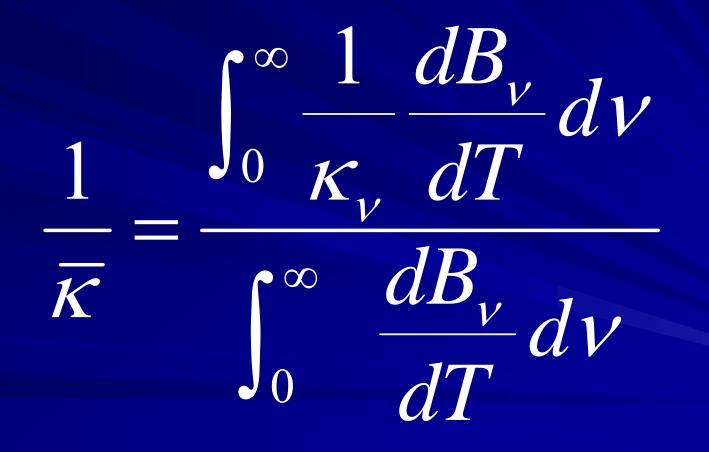
$$\kappa_{bf}(\nu) = \sum_{n} \frac{N_n}{\rho} \sigma_{\nu n}$$

Continuous Opacity

Other Opacities

Source	BF	FF	Other	
HI	Yes	Yes	Rayleigh	
H2-	Yes	Yes		
H-	Yes	Yes		
He I	Yes	Yes	Rayleigh	
He II	Yes	Yes		
He-		Yes		
Low Temperature Atomic: T < 10000K				
CI	Yes	Yes		
Mg I	Yes	Yes		
Si I	Yes	Yes		
AlI	Yes	Yes		
Intermediate Atomic: $10000 < T < 20000$				
Mg II	Yes	Yes		
Si II	Yes	Yes		
Ca II	Yes	Yes		
NI	Yes	Yes		
ΙO	Yes	Yes		
Hot Atomic: T > 20000K				
C II – IV	Yes	Yes		
N II – V	Yes	Yes		
Ne I - VI	Yes	Yes		

The Rosseland Mean Opacity



More Spectroscopic Notation

H Like Only

Electron and proton have

- Spin $\frac{1}{2}$
- Angular momentum $\hbar/2$ and each has a corresponding magnetic moment
- The magnetic moment of the electron interacts with both the orbital magnetic moment of the atom (spin-orbit) and the spin of the proton (spin-spin).
 - Spin-orbit: fine structure (multiplets)
 - Spin-spin: hyperfine structure

Notation

Principal Quantum Number n
 Orbital Quantum Number *ℓ*: *ℓ* ≤ n - 1
 S P D F

 $-\ell = 0 1 2 3$

Total angular momentum of a state specified by $\ell = \ell$ [$(\ell+1)$]^{1/2} \hbar

Spin angular momentum (s=1/2): $[s(s+1)]^{\frac{1}{2}}\hbar = \sqrt{3}$ $\hbar/2$

Orbital and spin angular momentum interacts to produce a total angular momentum quantum number j = $\ell \pm 1/2$: S States have j = 1/2, P states have j = 1/2, 3/2; and D has j = 3/2, 5/2

H Like Notation

2s+1