Continuous Opacity Sources

Continuous Opacity Sources

Principal Sources:

- Bound-Bound Transitions
- – Bound-Free
- –– Free-Free (Bremstralung)
- – $-$ Electron Scattering (Thompson $\&$ Compton)
- **Molecular Transitions**
- \blacksquare We consider only H or H-Like cases
	- – $-$ We will do this classically (and correct to the QM result)
	- – $-$ Stars are mostly H (in one form or another).

Dominant Opacity Sources

Caveats and Details

- At High Temperatures: $(1-e^{-h\nu/kT}) \rightarrow 0$ so all of the bb, bf, and ff sources go to 0!
- **Electron scattering takes over (is always there and** may be important).
	- –- Free-Free is not the same as electron scattering: Conservation of momentum says a photon cannot be absorbed by a free particle!

 \blacksquare In principal we start with a QM description of the photon - electron interaction which yields the cross section for absorption/scattering of the photon of energy hv, call the cross section $a_i(v)$.

The Opacity Is

The opacity (g/cm^2) for the process is $K_i(v) = n_i a_i(v)/\rho$ n_i is the number density (#/cm³) of the operant particles The subscript i denotes a process/opacity The subscript i denotes a process/opacity \blacksquare The total opacity is $K_{total} = \sum K_i(v)$

Compton Scattering

 \blacksquare This process is important only for high energy photons as the maximum change is 0.024\AA . Reference: Eisberg -- Fundamentals of Modern Physics p. 81 ff.

Electron Scattering Conditions \blacksquare Collision of an electron and a photon – –– Energy and Momentum **Must** be conserved \blacksquare In stellar atmospheres during photon-electron collisions the wavelength of the photon is collisions the wavelength of the photon is increased (assume the $\rm E_{electron}$ $<$ $\rm ~Photon ~ (hv))$ – – $-$ At 4000Å: hv = 4.966(10- $^{12})$ ergs – – $-$ ½ mv 2 < 5(10⁻¹²) ergs ==> v < 10 8 cm/s – – $-$ At 5000K v $_{\rm RMS}$ = 6.7(10⁵) cm/s – – $-$ At 100000K v $_{\rm RMS}$ = 3(10⁶) cm/s

Thompson Scattering

Classical Electron Scattering

Reference: Marion - Classical Electromagnetic Radiation p. 272 ff \blacksquare Low Energy Process: $v \ll c$ **Energy Absorbed from the EM field is** 2 2 3 2 $\frac{dE}{dt} = \frac{2}{3} \frac{e^2}{c^3} a^2$ (#)

a = acceleration of the electron: $a = eE/m_e$ and E is the magnitude of the electric field.

Thompson Scattering

 \blacksquare Field Energy Density $=$ $\langle E^2/4\pi\rangle$ (Time Average) **Energy Flux Per Electron** $= c < E^2/4\pi$ \blacksquare Now Take the Time Average of $(\#)$: \blacksquare But that has to be the energy flux per electron

times the cross section

which is $\sigma_{\rm T}$ c <E²/4π>.

2 2 3 ² e^2 / $\sqrt{2}$ 3 2 2 3 2 3 *e* $\left(\frac{dE}{dt}\right) = \frac{2}{3}\frac{e^2}{c^3} < a$ *e e c m* $=-\frac{1}{a} < a^2 >$ $=$ $=$ $\frac{6}{10}$ $\frac{6}{10}$ $\frac{6}{10}$ $\sqrt{2}$

The Thompson Cross Section

$$
\sigma_T c \left(\frac{E^2}{4\pi} \right) = \frac{2}{3} \frac{e^2}{c^3} \frac{e^2}{m_e^2} \left\langle E^2 \right\rangle
$$

$$
\sigma_T = \frac{8\pi}{3} \left(\frac{e^2}{m_e c^2} \right)^2 = 6.65(10^{-25}) \text{ cm}^2
$$

At High Temperatures this breaks down: $T \ge 10^9$ K

Continuous Opacity Continuous Opacity 10

Electron Scattering Opacity Electron Scattering Opacity

 $\rm K^{}_e \rm = \sigma^{}_T N^{}_e/\rho$ *There is no frequency dependence! There is no frequency dependence!* **Scattering off other ions is unimportant:** Cross Section Goes as $(1/m)^2$ so for ions $(1/Am_H)^2$ while for electrons it goes as $(1/m_e)^2$ Ratio: Ions/Electrons = $(m_e/Am_H)^2$ = $(1/A(1840))^2 < 10^{-6}$

Rayleigh Scattering: σ_R

- \blacksquare Scattering of a low energy photon by a bound electron.
- **Classically: Rayleigh scattering occurs when a** photon of energy less than the atomic energy spacing is absorbed.
	- – $-$ The electron then oscillates about the unperturbed $\overline{}$ energy level (harmonically). energy level (harmonically).
	- –– The electron reradiates the same photon but remains in the same energy state.

The Rayleigh Cross-Section

The cross section is: $\sigma = \sigma_T/(1-(v_0/v)^2)^2$ – – $-$ Where hv is the photon energy – – $-$ hv $_{0}$ is the restoring force for the oscillator When $v \ll v_0$: $\sigma_R = \sigma_T (\lambda_0/\lambda)^4$ – – $-$ Now since $v \ll v_0$ we have $OE \ll kT$ – –– Which implies T \sim 1000 K for this process.

Free-Free Opacities

Absorption Events

\blacksquare Bremstralung

– – $-$ Electron moving in the field of an ion of charge Ze emits or absorbs a photon:

 \blacksquare Acceleration in field produces a photon of hv

 \blacksquare De-acceleration in field consumes a photon of hv

- **Exercise Consider the Emission Process**
	- –– Initial Electron Velocity: v′
	- –– Final Electron Velocity: v

Conservation of Energy Yields

 $\frac{1}{2} m_e v^2 + h v = \frac{1}{2} m_e v^2$

Energy Considerations Energy Considerations

Energy Absorbed: dE/dt = $2/3$ (e²/c³) a² where a = e $\mathsf{E/m}_\mathrm{e}$ (a is the acceleration)

$$
E = \int_{-\infty}^{\infty} \frac{dE}{dt} dt = \frac{2}{3} \frac{e^2}{c^3} \int_{-\infty}^{\infty} a^2 dt
$$

 \blacksquare Most energy is absorbed during the time t \odot b/v' when the electron is close to the ion

– – $-$ b is called the impact parameter

– – $-$ b is the distance of closest approach

Acceleration is \sim Ze²/m_eb² \blacksquare E_{abs} \odot 2/3 (e²/c³) (Ze²/m_eb²)² (b / v')

$$
\bigcirc 2/3 ((Z^2 e^6) / (m_e^2 c^3 b^3 v'))
$$

Frequency Dependence

Expand dE/dT in a Fourier Series

$$
\frac{dE(v)}{dt} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{dE(t)}{dt} e^{-2\pi i vt} dt
$$

 $-$ Therefore 2πν b / v' = 1 or 2πν = v' / b

- **The energy emitted per electron per ion in the** frequency range d is
	- – $-dq_v = 2\pi b \ db \ E_{abs}$ Why? $2\pi b \ db$ is an area!
	- – $-dq_v =$ energy emitted per electron per ion per unit frequency

Bremstralung Energy

- Total Energy Emitted: $n_i n_e$ v'f(v')dv' dq_v
	- $-$ n_i = Ion number density
	- n_e = electron number density (note that the electron flux is n_e v′f(v′)dv′)

The reverse process defines the Bremstralung The reverse process defines the Bremstralung absorption coefficient a_{ν} giving the absorption per ion per electron of velocity v from the radiation field.

In TE: Photon Energy Density = $U_{vp} = (4\pi/c)$ $B_v(T)$

The Absorption Coefficient

 \blacksquare Net energy absorbed must be the product of the photon flux (photon energy = hv) $cU_{\nu}dv$ and $n_{\textrm{i}}n_{\textrm{e}}\textrm{f(v)}$ dva $_{\textrm{v}}$ and (1-e^{-hv/kT}) or – – $- \text{ cU}_{\text{vp}}$ dv n_in_ef(v)dva_v (1-e^{-hv/kT}) But in TE that must be equal to the emission: – – $- c U_{\nu p} dv n_i n_e f(v) dv a_v (1-e^{-hv/kT}) = n_i n_e v' f(v') dv' d q_v$ $a_v = \pi/3 \ (Z^2 e^6) / (\hbar c \ m_e^2 \ v^3 \ v)$ This is off by $4/\sqrt{3}$ from the exact classical result.

The Bremstralung Opacity

 $\kappa_{ff}(v) = \int_{0}^{v} n_{i}n_{e}f(V)a_{v}g_{ff}(v,V)dv$ ∞ \sim ∫

 \blacksquare V is v in the previous equations

This reduces to

 $\kappa_{\rm ff}(v) = 4/3 \; n_{\rm i}n_{\rm e} (2\pi/3m_{\rm e}kT)^{1/2} ((Z^2e^6)/(hc \; m_{\rm e}v^3))$ $g_{\text{ff}}(v)$

 \Box g_{ff}(v) is the mean Gaunt factor and the result has been corrected to the exact classical result.

Bound Free Opacities

Transition from a Bound State to Continuum or Visa Versa

This process differs from the free-free case due to the discrete nature of one of the states

 \blacksquare Nth Discrete State:

$$
E_n = \frac{-m_e Z^2 e^4}{2\hbar^2 n^2} = -\frac{I_H Z^2}{n^2}
$$

Then the electron capture/ionization process must satisfy:

$$
\frac{1}{2} m_e v^2 - E_n = h v
$$

Bound Free

 \blacksquare V is the velocity of the ejected or absorbed electron.

 \blacksquare Semiclassical treatment of electron capture

- –- Electron Initial Energy: $\frac{1}{2}$ $m_e v^2$ and is positive
- –- The energy decreases in the electric field as it accelerates seeing ion of charge Ze
- –- Q: Why does it loose energy as it accelerates?
- –– A: It radiates it away
- **The energy loss per captured electron may be** estimated as:

– – $-dq_v = 2\pi b d b E_{abs} = (8\pi^2/3) ((Z^2 e^6)/(m_e^2 c^3 v'^2 dv))$

Cross Section

 \blacksquare The cross section for emission of photons into frequency interval dy is defined by

– –— hν d σ_{v} = dq_v = hν (d σ_{v} /dv) dv

The final state is discrete so define σ_{cn} as the cross as section for capture into state n (energy E_n) characterized by n in the range (n, n+dn) so that d σ_{v} = $\sigma_{\rm cn}$ dn. Then

– –— hν (dσ_ν/dv) = hν σ_{cn} dn/dv

– – $-$ Solve for $\sigma_{\rm cn}$ and use ${\rm E_n}$ = -I_HZ²/n² to get dn/dv

Thus: σ_{cn} = ((2I_HZ²/n²)/(h²vn³))(dq_v/dv)

 $= (32/3) \pi^4 ((Z^2 e^{10})/(m_e c^3 h^4 v^2 v n^3))$

Photoionization Photoionization

Let $\sigma_{\rm vn}$ = photoionization cross section \blacksquare The number of photons absorbed of energy hv with the emission of electrons of energy $\frac{1}{2}m_e v^2$ - E_n from the nth atomic state is – – $- \left(\text{cU}_{\text{vp}} \! \left/ \text{hv} \right) \text{dv} \ \sigma_{\text{vn}} \ \text{N}_{\text{n}} \left(1\text{-e}^{\text{-hv/kT}} \right)$ – – $-N_n$ is the number of atoms in state n **The reverse process: the number of electrons** with initial velocities v captured per second into state n is N_i σ_{cn} n_e v f(v) dv The reverse process is related by detailed balance

State Population

The Boltzmann Equation for the system is:

$$
\frac{N_n}{N_1} = \frac{g_n}{g_1} e^{-\frac{-I_H Z^2 (1 - \frac{1}{n^2})}{kT}}
$$

where $g_1 = 2$ and $g_n = 2n^2$ (H-like ions) and the Saha equation is

$$
\frac{N_{i}N_{e}}{N} = 2\frac{g_{i}}{U_{I}} \left(\frac{2\pi m_{e}kT}{h^{2}}\right)^{3/2} e^{\frac{-I_{H}Z^{2}}{kT}}
$$

Detailed Balance says:

$$
\mathbf{I}(cU_{vp}/hv)dv\sigma_{vn}N_n(1-e^{-hv/kT})=N_i\sigma_{cn}n_evf(v)dv
$$

The Bound Free Coefficient

We assume ш

- – $-$ Maxwellian distribution of speeds
- –– Boltzmann and Saha Equations

$$
\blacksquare \sigma_{vn} = (g_i/g_n) (m_e v c/h v)^2 \sigma_{cn}
$$

We assume the $Z-1$ electrons in the atom do not participate, set $g_i = 1$, and correct for QM then

$$
\sigma_{vn} = \frac{64\pi^4}{3\sqrt{3}} \frac{m_e Z^4 e^{10}}{h^6 c v^3 n^5} g_{bf}(v,n)
$$

Limits and Conditions Limits and Conditions

Photon *must* have $hv > E_n$ – –— σ = 0 for hν < En (= I_HZ²/n²) Recombination – – $-$ Levels coupled to v by bound free processes have E_n for $n > n^*$ where $n^* = (I_H Z^2/hv)^{1/2}$ **The Total Bound Free Opacity:**

$$
\kappa_{bf}(\nu) = \sum_{n} \frac{N_n}{\rho} \sigma_{\nu n}
$$

Other Opacities

The Rosseland Mean Opacity

More Spectroscopic Notation

H Like Only

Electron and proton have

- – $-$ Spin $\frac{1}{2}$
- –– Angular momentum $\hbar/2$ and each has a 2 corresponding magnetic moment
- \blacksquare The magnetic moment of the electron interacts with both the orbital magnetic moment of the atom (spin-orbit) and the spin of the proton (spin-spin).
	- –– Spin-orbit: fine structure (multiplets)
	- –– Spin-spin: hyperfine structure

Notation

Principal Quantum Number n ■ Orbital Quantum Number $\ell: \ell \leq n - 1$ – – S P D F **– l** = 0 1 2 3

T Total angular momentum of a state specified by $\ell = \ell$ $[(\ell+1)]^{\frac{1}{2}} \bar{h}$

Spin angular momentum (s=1/2): $[s(s+1)]^{\frac{1}{2}}\hbar = \sqrt{3}$ \hbar /2

Orbital and spin angular momentum interacts to produce a total angular momentum quantum number j $=$ ℓ \pm 1/2: S States have $j = 1/2$, P states have $j = 1/2$, 3/2; and D has $j = 3/2, 5/2$

H Like Notation

2 *s* + 1 *j*