
Gray Case 1

The Gray Case

Let us assume that the opacity is 
independent of frequency:

Κν→ Κ

NB: This does not mean Iν = I, that is, the 
intensity (flux, etc) ARE frequency 
dependent.



Gray Case 2

Equation of Transfer

Assume Radiative equilibrium
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Gray Case 3

Continuing:

•Assume LTE ==> Sν = Bν ==> J(τ) = S(τ) = B(τ)
But B(τ) = σT4/π

•Remember:
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Gray Case 4

On We Go...

Now Integrate over all solid angles:

cos

cos
4 4 4

1 1 1( cos )
4 4 4

dI I B
d

dI d d dI B
d

d I d Id Bd
d

θ
τ
ω ω ωθ

τ π π π

θ ω ω ω
π τ π π

= −

= −

= −

1 1cos
4 4

0

d I d Id B
d

dH J B
d

H

θ ω ω
τ π π

τ

= −

= − =

∴
=

∫ ∫

Constant



Gray Case 5

More Equations!

Multiply by μdω/4π (i.e..  Take the 1st moment)

Note:

Therefore:
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Gray Case 6

Make An Assumption!
• To proceed further (to this point we have been rather rigorous 

(e.g., we assume LTE and radiative equilibrium but do everything
else properly).

• In the interior of a star I ≠ f(θ) so consider K = 1/4π ∫I(θ) cos2θdω
• But if I ≠ f(θ) then
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Gray Case 7

What About J?
If I ≠ f(θ) then J = I/4π∫dω = I  but this means

K → J / 3
Here’s the approximation: K = J/3 everywhere.  This is 

called the Eddington Approximation.

dK/dτ = H
dJ/dτ = 3H

or J = 3Hτ + C

Now Let us Consider the Intensities



Gray Case 8

Gray Case Intensity
We will consider that I ≠ f(θ) except for the general distinction 
between an inward and an outward flow:

I(θ) = I1 :     0 < θ < π/2   Outward
= I2 :  π/2 < θ < π Inward

We shall also assume that at the surface that I is constant over the 
hemisphere and that there is no inward flux (I2 = 0) so
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Gray Case 9

Continuing On ....
What we want is the constant is the constant in

J = 3Hτ + C

At the Surface I2 = 0 so
J0 = I0/2
H0 = I0/4

which means H0 = J0/2
So J = 3Hτ + C evaluated at τ=0 (the surface) yields: 

2H = C
∴

J(τ) = 3Hτ + 2H = H(3τ + 2)
But note that FA = 4H so 

J(τ) = (F/4)(3τ + 2)



Gray Case 10

The T - τ Relation
A Relation of Fundamental Importance is the relation 

between the temperature T and the optical depth τ.

For the Gray Case:    J(τ) = H(3τ + 2)

But in LTE:   J = B
∴

B(T) = H(3τ + 2)

But this is the Integrated B = σT4/π so

σT4/π = H(3τ + 2)



Gray Case 11

More on T-τ
At τ0 = 0 we have σT0

4/π = 2H
so

σT4/π = 3Hτ + 2H = σT0
4/π + 3/2 σT0

4/π τ
T4 = T0

4 + 3/2 T0
4 τ

= T0
4(1 + 3/2 τ)

But what is T0?  Well remember that FP =4πH = σT4

and FA = 4H = σT4/π
The definition of Teff is FP = σTeff
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Gray Case 12

The T-τ Relation

For the Sun Teff = 5740 K which yields T0 = 4826 K
so to specify the temperature structure

T4 = 1/2 Teff
4(1 + 3/2 τ)

NB: T = Teff at τ = 2/3
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