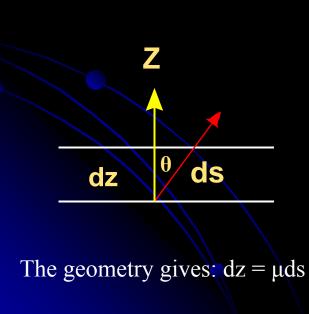
The Equation of Transfer

Basic Ideas

- Change = Source Sink
 - Change In Intensity = Emitted Energy "Absorbed" Energy
- $dI_v dv d\mu dt dA = j_v (\rho dA ds) dv d\mu dt K_v I_v (\rho dA ds) dv d\mu dt$

C

• $dI_v = \rho j_v ds - \rho K_v I_v ds$



$$I_{v} = j_{v}(\rho/\mu) dz - K_{v} I_{v} (\rho/\mu) dz$$

$$\mu dIv / \rho dz = j_{v} - K_{v} I_{v}$$

Remember: $d\tau_{v} = -\rho K_{v} dz$

$$\mu (dI_{v}/d\tau_{v}) = I_{v} - S_{v}$$

Where $S_{v} \equiv j_{v} / K_{v}$

The Source Function S_v

• K, is the total absorption coefficient • $\mathbf{K}_{v} = \mathbf{\kappa}_{v} + \mathbf{\sigma}_{v}$ • The equation of transfer is $\mu(dI_v/d\tau_v) = I_v - S_v$ • The Emission Coefficient $j_v = j_v^t + j_v^s$ • If there is no scattering: $j_{v}^{s} = 0$ and $\sigma_{v} = 0$ • Then $j_v = j_v^t$ and $K_v = \kappa_v$ • Thus $S_v = j_v / K_v = j_v^t / \kappa_v = B_v(T)$ • In the case of no scattering the source function is the Planck Function!

The Slab Redux

- Slab: No Emission but absorption
- $\mu dI_v / \rho dz = K_v I_v$
- $\mu dI = -\rho K_v dz I_v$
- $dI_v/I_v = d\tau_v/\mu$
- $I(0,\mu) = I(\tau_{\nu},\mu)e^{-\tau/\mu}$

• Note that the previous solution was for $\mu = 1$ which is $\theta = 0$.

Formal Solution

- $\mu dI/d\tau = I S$: Suppress the frequency dependence
- It is a linear first-order differential equation with constant coefficients and thus must have an integrating factor: $e^{-\tau/\mu}$
- $d/d\tau (Ie^{-\tau/\mu}) = -S e^{-\tau/\mu} / \mu$
- $dI/d\tau \ e^{-\tau/\mu} + I \ e^{-\tau/\mu} (-1/\mu) = -S \ e^{-\tau/\mu} / \mu$
- $dI/d\tau + I/-\mu = -S/\mu$
- $\mu dI/d\tau = -S + I$

$$Ie^{\frac{-\tau}{\mu}}|_{\tau_{1}}^{\tau_{2}} = -\int_{\tau_{1}}^{\tau_{2}} S(t)e^{\frac{-t}{\mu}}dt / \mu$$

SO

$$I(\tau_1,\mu) = I(\tau_2,\mu)e^{\frac{-(\tau_2-\tau_1)}{\mu}} + \int_{\tau_1}^{\tau_2} S(t)e^{\frac{-(t-\tau_1)}{\mu}}dt / \mu$$

Boundary Conditions

• For the optical depths: $\tau_1 = 0$ and $\tau_2 \rightarrow \infty$

• We Require:
$$\lim_{\tau \to \infty} I_{\nu}(\tau_{\nu}, \mu) e^{\frac{-\iota_{\nu}}{\mu}} = 0$$

• The above is the lower boundary "boundedness" condition. The upper boundary condition is that there be no incoming radiation.

$$I(0,\mu) = \int_0^\infty S(t) e^{\frac{-t}{\mu}} \frac{dt}{\mu}$$

Equation of Transfer

Physical Meaning
$$I(0, \mu) = \int_{0}^{\infty} S(t) e^{\frac{-t}{\mu}} \frac{dt}{\mu}$$

- The physical meaning of the solution is that the emergent intensity is the weighted mean of the source function with the weights proportional to the fraction of energy getting to the surface at each wavelength / frequency. The solution depends on the form of S:
- Let S = a+bt• Then $I(0,\mu) = a + b\mu$

Separate τ Into Domains Incoming and Outgoing at an Arbitrary Depth

"Outgoing"

$$I(\tau,\mu) = \int_{\tau}^{\infty} S(t) e^{\frac{-(t-\tau)}{\mu}} \frac{dt}{\mu}$$

 $0 \le \mu \le 1$ or $90 \ge \theta \ge 0$

"Incoming"

$$I(\tau,\mu) = \int_{\tau}^{0} S(t) e^{\frac{-(t-\tau)}{\mu}} \frac{dt}{\mu}$$

 $-1 \le \mu \le 0$ or $180 \ge \theta \ge 90$

What Is the Difficulty?

These appear simple enough but ...

- Consider the Source Function S
- What is the "Usual" form for S?
 - For coherent isotropic scattering (a very common case):
 - $S_v = (\kappa_v / (\kappa_v + \sigma_v)) B_v + (\sigma_v / (\kappa_v + \sigma_v)) J_v$
- So the solution of the equation of transfer is:

$$I(0,\mu) = \int_0^\infty S(t) e^{\frac{-t}{\mu}} \frac{dt}{\mu}$$

• But J depends on I: $J_v = (1/4\pi)e_T I_v d\mu$

- Therefore S depends on I
- This is not an easy problem in general!

Schwarzschild-Milne Equations

• Let us look at the Mean Intensity J_v

$$I(\tau) = 1/2 \int_{-1}^{1} I(\tau,\mu) d\mu$$

= $1/2 \int_{\tau}^{\infty} S(t) \int_{0}^{1} e^{\frac{-(t-\tau)}{\mu}} \frac{d\mu}{\mu} dt + 1/2 \int_{0}^{\tau} S(t) \int_{-1}^{0} e^{\frac{-(\tau-t)}{-\mu}} \frac{d\mu}{-\mu} dt$

• In the second integral we have 1) reversed the order of integration so $\mu => -\mu$ and 2) changed the sign on both parts of the exponent. (See Slide 8).

Continuing ...

$$J(\tau) = 1/2 \int_{\tau}^{\infty} S(t) \int_{1}^{\infty} e^{-w(t-\tau)} \frac{dw}{w} dt + 1/2 \int_{0}^{\tau} S(t) \int_{1}^{\infty} e^{-w(\tau-t)} \frac{dw}{w} dt$$

• For integrand 1: $w = \mu^{-1} \Rightarrow dw = -\mu^{-2}d\mu$ so $dw/w = -d\mu/\mu$. For the second $w = -\mu^{-1}$ for which $dw/w = -d\mu/\mu$ also. In the first integral we also changed the order of integration (which cancelled the minus sign on dw/w).

$$J(\tau) = 1/2\int_0^\infty S(t) \left[\int_1^\infty e^{-w|t-\tau|} \frac{dw}{w}\right] dt$$

Equation of Transfer

The Exponential Integral

The Integrals in $J(\tau)$ are Called the Exponential Integrals

$$E_n(x) \equiv \int_1^\infty \frac{e^{-xt}}{t^n} dt$$

$$= x^{n-1} \int_x^\infty \frac{e^{-t}}{t^n} dt$$

These integrals are recursive!

Schwarzschild-Milne Equations

$$J_{\nu}(\tau_{\nu}) = \frac{1}{2} \int_{0}^{\infty} S_{\nu}(t_{\nu}) E_{1}(|t_{\nu} - \tau_{\nu}|) dt_{\nu}$$
$$H_{\nu}(\tau_{\nu}) = \frac{1}{2} \int_{0}^{\infty} S_{\nu}(t_{\nu}) E_{2}(|t_{\nu} - \tau_{\nu}|) dt_{\nu}$$

The Mean Intensity Equation is called the Schwarzschild Equation and the flux equation is called the Milne equation. The surface flux is:

$$H_{\nu}(0) = \frac{1}{2} \int_{0}^{\infty} S_{\nu}(t_{\nu}) E_{2}(t_{\nu}) dt_{\nu}$$

Equation of Transfer