Absorption and Scattering

Definitions – Sometimes it is not clear which process is taking place

Absorption and Scattering

- Scattering: Photon interacts with the scatterer and emerges in a new direction with (perhaps) a slightly different frequency
 - No destruction of the photon in the sense that energy is added to the kinetic pool
- Absorption: Photon interacts and is destroyed and its energy is converted (at least partially) into kinetic energy of the particles composing the gas.
- Scattering is mostly independent of the thermal properties of the gas and depends mostly on the radiation field.

Absorption and Scattering

Absorption processes depend on the thermodynamic properties of the gas as they feed energy directly into the gas.
NB: thermal emission couples the thermodynamic quantities directly to the radiation field!

Scattering Processes

- Bound-Bound Transitions followed by a direct reverse transition:
 - $a \rightarrow b : b \rightarrow a$
 - There can be a small \$\Phi E\$ as the energy states have finite width (substates)
 - $\Phi E \sim 0$ and "only" the direction changed!
- Photon scattering by a free electron (Thomson) or molecule (Rayleigh)
 - Thomson: 0.6655 (10⁻²⁴) N_e
 - Rayleigh: $\Leftrightarrow \lambda^{-4}$

Absorption Processes

- Photoionization / bound-free transition
 - Excess energy goes into KE
 - Inverse Process: Radiative Recombination
- Free-Free Absorption: an electron moving in the field of an ion absorbs a photon causing a shift in the "orbit" (hyperbolic).
 - Inverse Process: Bremsstrahlung
- Bound-Bound Photoexcitation followed immediately by a collisional de-excitation ==> photon energy shared by partners and goes into the kinetic pool.
 - Inverse Process: -----
- Photo-excitation followed immediately by a collisional ionization.
 - Inverse Process: Collisional Recombination

Caveats

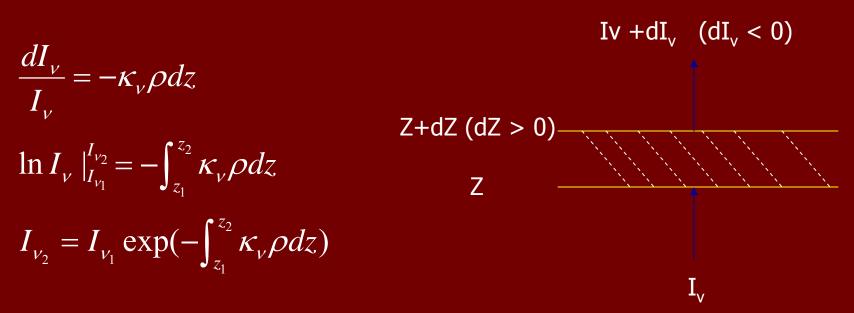
These lists are not exhaustive. In many cases the line between the two processes is not clear, especially with bound-free events.

Absorption Coefficient

Absorption Coefficient κ_v per gram of stellar material such that:

- A differential element of material of cross section dA and length ds absorbs an amount of energy from a beam of specific intensity I_v (incident normal to the ends of the element):

 $- dE_v = \rho \kappa_v I_v d\omega dt dA ds dv$


Scattering Coefficient

Similarly, σ_v governs the amount of energy scattered out of the beam.

 $dE_{v} = \rho \sigma_{v} I_{v} d\omega dt dA ds dv$

- We assume that both κ_v and σ_v have no azimuthal dependence. The combined effect of κ_v and σ_v is to remove energy from the beam.
- The total extinction coefficient is: $K_v = \kappa_v + \sigma_v$
- \blacksquare K_v is called the "mass absorption coefficient"

The Simple Slab $dI_v = -\rho \kappa_v I_v dz$ I_v : ergs Hz⁻¹ s⁻¹ cm⁻¹ sterad⁻¹ κ_v : cm² gm⁻¹ $\rho \kappa_v$: cm⁻¹

The Simple Slab Continued

- In the above 1 and 2 are arbitrary limits
- Let us now integrate over the slab (assign physically meaningful values to the integration limits). We want the "output" at the top (Z=0) coming from depth X in the slab (star?!)

-
$$I_{v1} = Initial intensity = I_v(X)$$

- I_{v2} = Output Intensity
- $Z_1 =$ Level of Origin
- Z_2 = Level of Output (= 0)

$$I_{\nu}(0) = I_{\nu}(X) \exp(-\int_{x}^{0} \kappa_{\nu} \rho dz)$$

The Optical Depth

The Dimensionless Quantity τ

$$d\tau_v = -\kappa_v \rho dx$$

$$\tau_{v_2} - \tau_{v_1} = -\int_{x_1}^{x_2} \kappa_v \rho dx$$

Note that τ and X increase in opposite directions. Boundary Conditions: At the surface $\tau_{v1} \equiv 0$ and at the "base" $X_1 \equiv 0$. Therefore:

$$\tau_{v_2} = -\int_0^{x_2} \kappa_v \rho dx$$
$$-\tau_v = -\int_x^0 \kappa_v \rho dx$$
$$\therefore$$
$$I_v(0) = I_v(x)e^{-\tau_v}$$

Absorption and Scattering

Optical Depth

Surfaces and Probability

The optical depth of a slab determines how much light escapes from a given level:

- If $\tau = 2$ then I = I₀e⁻² ==> 0.135 of I₀ escapes

The usual definition of "continuum" (AKA the "surface" of a star) is where a photon has a 50% chance of escaping:

 $-e^{-\tau} = 0.5 \Longrightarrow \tau = 0.693$

An exercise in atmospheric extinction. A cloud can easily contribute 3 magnitudes of extinction:

 $- 1/(2.512)^3 = e^{-\tau} \Longrightarrow \tau = 2.763.$

Emission Processes

If there is a sink then there must be a source!

Emission coefficient: j_v

- $dE_v = \rho j_v d\omega dv dt dA ds$
- Or per unit mass in an incremental volume:
- $dE_v = j_v d\omega dv dt$
- Let us consider thermal emission. Consider a cavity of uniform temperature T which is a blackbody. This demands
 - $j_v^{t} = \kappa_v B_v(T) Kirchoff-Planck Law$
 - $-\kappa_v$ is absorption only
 - Strict Thermodynamic Equilibrium applies
 - Thermal absorption and emission independent of angle.

TE and Stellar Atmospheres

- Energy is transported in a stellar atmosphere
 This means the radiation field is anisotropic
 - There is also a temperature gradient which is demanded by the energy flow (2nd Law)
- Strict Thermodynamic Equilibrium cannot hold!
- For convenience we shall assume that local thermodynamic equilibrium holds ==> T, N_e, etc locally determine occupation numbers.