
Basic DefinitionsBasic Definitions

Terms we will need to discuss Terms we will need to discuss 
radiative transfer.radiative transfer.
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Specific Intensity ISpecific Intensity I

IIνν((rr,,nn,t,t) ) ≡≡ the amount of energy at position the amount of energy at position rr (vector), (vector), 
traveling in direction traveling in direction nn (vector) at time t per unit (vector) at time t per unit 
frequency interval, passing through a unit area frequency interval, passing through a unit area 
oriented normal to the beam, into a unit solid angle in oriented normal to the beam, into a unit solid angle in 
a second (unit time).a second (unit time).
If If θθ is the angle between the normal is the angle between the normal ss (unit vector) of (unit vector) of 
the reference surface the reference surface dAdA and the direction and the direction nn then the then the 
energy passing through energy passing through dAdA isis

dEdEνν = I= Iνν((rr,,nn,t,t) ) dAdA coscos ((θθ) d) dνν ddωω dtdt
IIνν is measured in erg Hzis measured in erg Hz--11 ss--11 cmcm--22 steradiansteradian--11
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Specific Intensity IISpecific Intensity II
We shall only consider time independent properties of We shall only consider time independent properties of 
radiation transferradiation transfer

Drop the tDrop the t

We shall restrict ourselves to the case of planeWe shall restrict ourselves to the case of plane--
parallel geometry.parallel geometry.

Why: the point of interest is d/D where d = depth of Why: the point of interest is d/D where d = depth of 
atmosphere and D = radius of the star.atmosphere and D = radius of the star.
The formal requirement for planeThe formal requirement for plane--parallel geometry is that parallel geometry is that 
d/R ~ 0d/R ~ 0
For the Sun:   d ~ 500 km, D ~ 7(10For the Sun:   d ~ 500 km, D ~ 7(1055) km) km

d/D ~ 7(10d/D ~ 7(10--44) for the Sun) for the Sun
The above ratio is typical for dwarfs, The above ratio is typical for dwarfs, supergiantssupergiants can be of order can be of order 
0.3.0.3.
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Specific Intensity IIISpecific Intensity III
Go to the geometric Go to the geometric 
description (z,description (z,θθ,,φφ) ) -- polar polar 
coordinatescoordinates
θθ is the polar angleis the polar angle
φφ is the is the azimuthalazimuthal angleangle
Z is with respect to the stellar Z is with respect to the stellar 
boundary (an arbitrary idea if boundary (an arbitrary idea if 
there ever was one).there ever was one).

Z is measured positive Z is measured positive 
upwardsupwards

+ above + above ““surfacesurface””
-- below below ““surfacesurface””

Z φφ

θ

Iν
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Mean Intensity: Mean Intensity: JJνν(z(z))
Simple Average of I over all solid anglesSimple Average of I over all solid angles

IIνν is generally considered to be independent of is generally considered to be independent of φφ soso

Where Where µµ = = coscosθθ ==> d==> dµµ = = --sinsinθθddθθ
The lack of The lack of azimuthalazimuthal dependence implies homogeneity in the dependence implies homogeneity in the 
atmosphere.atmosphere.

2

0 0

2

0 0

( , , ) /

sin 4

(1/ 4 ) ( , , )sin

J I z d d

d d d

J d I z d

ν ν

π π

φ θ

π π

ν ν

θ φ ω ω

ω θ θ φ π

π φ θ φ θ θ

= =

=

= =

=

∫ ∫

∫ ∫ ∫

∫ ∫

but

Therefore

0
1

1

1/ 2 ( , )sin

1/ 2 ( , )

J I z d

I z d

π

ν ν

ν

θ θ θ

μ μ
−

=

=

∫
∫



6Basic Definitions

Physical FluxPhysical Flux
Flux Flux ≡≡ Net rate of Energy Flow across a unit area.  It is a Net rate of Energy Flow across a unit area.  It is a 

vector quantity.vector quantity.

Go to (z, Go to (z, θθ, , φφ) and ask for the flux through one of the plane ) and ask for the flux through one of the plane 
surfaces:surfaces:

Note that the Note that the azimuthalazimuthal dependence has been dropped!dependence has been dropped!
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Astrophysical FluxAstrophysical Flux

• FνP is related to the observed flux!
• R = Radius of star
• D = Distance to Star
• D>>R  All rays are parallel at the observer

• Flux received by an observer is dfν = Iν dω where
• dω = solid angle subtended by a differential area on 

stellar surface
• Iν = Specific intensity of that area.
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Astrophysical Flux IIAstrophysical Flux II
For this Geometry:

dA = 2πrdr
but R sinθ = r
dr = R cosθ dθ

dA = 2R sinθ Rcosθ dθ
dA = 2R2 sinθ cosθ dθ

Now μ = cosθ
dA = 2R2 μdμ

By definition dω = dA/D2

dω = 2(R/D)2 μ dμ

To ObserverR r

θ

θ
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Astrophysical Flux IIIAstrophysical Flux III
Now from the annulus the radiation emerges at angle θ so the 
appropriate value of Iν is Iν(0,μ).  Now integrate over the star:   
Remember dfν=Iνdω

NB: We have assumed I(0,-μ) = 0 ==> No incident radiation.  
We observe fν for stars: not FνP

Inward μ: -1 < μ < 0        Outward μ: 0 < μ < -1
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Moments of the Radiation FieldMoments of the Radiation Field
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Order 0 the Mean Intensity

Order the Eddington Flux

Order the K Integral
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Invariance of the Specific IntensityInvariance of the Specific Intensity
• The definition of the specific intensity leads to invariance.

Consider the ray packet 
which goes through dA at P 
and dA′ at P′

dEν = IνdAcosθdωdνdt = Iν′dA′cosθ′dω′dνdt
• dω = solid angle subtended by dA′ at P = dA′cosθ′/r2

• dω′ = solid angle subtended by dA at P′ = dAcosθ/r2

• dEν = IνdAcosθ dA′cosθ′/r2 dνdt = Iν′dA′cosθ′dAcosθ/r2

dνdt
• This means Iν = Iν′
• Note that dEν contains the inverse square law.

s s′

dA dA′
P P′θ θ′
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Energy Density IEnergy Density I
Consider an infinitesimal volume V into which Consider an infinitesimal volume V into which 
energy flows from all solid angles.  From a specific energy flows from all solid angles.  From a specific 
solid angle solid angle ddωω the energy flow through an element of the energy flow through an element of 
area area dAdA isis
δδEE = = IIννdAcosdAcosθθddωωddννdtdt
Consider only those photons in flight across V. If Consider only those photons in flight across V. If 
their path length while in V is their path length while in V is ℓℓ, then the time in V is , then the time in V is 
dtdt = = ℓℓ/c.  The volume they sweep is /c.  The volume they sweep is dVdV = = ℓℓdAcosdAcosθθ.  .  
Put these into Put these into δδEEνν::
δδEEνν = = IIνν ((dV/dV/ℓℓcoscosθθ)) coscosθθ ddωω ddνν ℓℓ/c/c
δδEEνν = (1/c) = (1/c) IIνν ddωωddννdVdV
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Energy Density IIEnergy Density II
Now integrate over volumeNow integrate over volume

EEννddνν = [(1/c)= [(1/c)∫∫VVdVdV IIννddωω]d]dνν

Let V Let V →→ 0: then 0: then IIνν can be assumed to be can be assumed to be 
independent of position in V.independent of position in V.
Define Energy Density   Define Energy Density   UUνν ≡≡ EEνν/V/V
EEνν = (V/= (V/c)c) IIννddωω
UUνν = (1/c) = (1/c) IIννddωω = (4= (4ππ/c) /c) JJνν

JJνν = (1/4= (1/4ππ)) IIννddωω by definitionby definition
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Photon Momentum TransferPhoton Momentum Transfer

Momentum Per Photon = mc = mcMomentum Per Photon = mc = mc22/c = /c = hhνν/c/c
Mass of a Photon = hMass of a Photon = hνν/c/c22

Momentum of a pencil of radiation with Momentum of a pencil of radiation with 
energy energy dEdEνν = = dEdEνν/c/c
dpdprr((νν) ) = (1/dA) (= (1/dA) (dEdEννcoscosθθ/c/c) ) 

= ((= ((IIννdAcosdAcosθθddωω)cos)cosθθ) / ) / cdAcdA
= I= Iννcoscos22θθddωω/c/c

Now integrate:  Now integrate:  pprr((νν) = (1/c) ) = (1/c) IIννcoscos22θθddωω
= (4= (4ππ/c)K/c)Kνν



15Basic Definitions

Radiation PressureRadiation Pressure
It is the momentum rate per unit and per unit solid angle It is the momentum rate per unit and per unit solid angle 
= Photon Flux * (= Photon Flux * (””mm””vv per photon) * Projection Factorper photon) * Projection Factor
dpdprr((νν) = () = (dEdEνν/(h/(hννdtdAdtdA)) * ()) * (hhνν/c/c) * ) * coscosθθ where where dEdEνν = = 
IIννddννdAcosdAcosθθddωωdtdt so so dpdprr((νν) = (1/c) I) = (1/c) Iννcoscos22θθddωωddνν
Integrate Integrate dpdprr((νν) over frequency and solid angle:) over frequency and solid angle:

Photon Momentum Transport Redux
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Isotropic Radiation FieldIsotropic Radiation Field
I(μ) ≠ f(μ)
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