Basic Definitions

Terms we will need to discuss
radiative transfer.




Specific Intensity I

[(r.,n,t) = the amount of energy at position r (vector),
traveling in direction n (vector) at time t per unit
frequency interval, passing through a unit area
oriented normal to the beam, into a unit solid angle 1n
a second (unit time).

If O 1s the angle between the normal s (unit vector) of
the reference surface dA and the direction n then the
energy passing through dA i1s

dE, = [ (r,n,t) dA cos (0) dv do dt
[, is measured in erg Hz! s-! cm™ steradian’!
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Specific Intensity 11

m We shall only consider time independent properties of
radiation transfer

= Drop the t

m We shall restrict ourselves to the case of plane-
parallel geometry.

= Why: the point of interest 1s d/D where d = depth of
atmosphere and D = radius of the star.

m The formal requirement for plane-parallel geometry is that
d/R ~0
m For the Sun: d~ 500 km, D ~ 7(10°) km
m d/D ~ 7(104) for the Sun

m The above ratio is typical for dwarfs, supergiants can be of order
0.3.
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Specific Intensity 111

m Go to the geometric
description (z,0,¢) - polar
coordinates

= 0 1s the polar angle
= ¢ 1S the azimuthal angle

m Z 1s with respect to the stellar
boundary (an arbitrary idea if

there ever was one).
m Z 1s measured positive
upwards

m + above “surface”
m - below “surface”
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Mean Intensity: J (z)

Simple Average of I over all solid angles

J,=$1,(2.0,¢)dw/pdo
but

2 o7 .
CJ-Dda) = j¢zo_[0:081n dodg =4rx
Therefore
2 V4 .
J =(1/4r) jo dg jo | (z,0,¢)sin6do
[, 1s generally considered to be independent of @ so

J,=1/2["1,(2,6)sin6d6

1
:1/2_“_1 | (z,1)d i

Where p = cos6 ==> du = -sin6d0

The lack of azimuthal dependence implies homogeneity in the
atmo Sphere, Basic Definitions 5




Physical Flux

m Flux = Net rate of Energy Flow across a unit area. It1is a
vector quantity.

FP =1, (F.Mido

m Goto(z 0, @) and ask for the flux through one of the plane
surfaces:

FP=F-k=¢1,(z,0,4)cos0d o

1
=27 1,(z,p)pd p

m Note that the azzimuthal dependence has been dropped!
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Astrophysical Flux
FA=Q1/7)F] : >

|
=2L |, (Z, 1) pd 12

* F ' is related to the observed flux!

r\ To Observer

>

e R = Radius of star
e D = Distance to Star
« D>>R =» All rays are parallel at the obsetver

* Flux received by an observer is df, = I dw where
* dw = solid angle subtended by a differential area on
stellar surface
* [, = Specific intensity of that area.
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Astrophysical Flux 11

For this Geometry:
dA = 2nrdr
but R sinf = r
dr = R cos0O dO
dA = 2R sinO RcosO dO
dA = 2R? sin6 cosH dO
Now pn = cos0
dA = 2R? pudu
By definition dow = dA/D?
dow = 2(R/D)? u du
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Astrophysical Flux 111

Now from the annulus the radiation emerges at angle 6 so the

appropriate value of I 1s I (O,u). Now integrate over the star:
Remember df =I dw

R 1
f, =272(5)° [ 1,(0, ppd

Rier_ (R a4
= (—)*FF = (—)*zF
(D)V (D) ;

NB: We have assumed I(0,-p) = 0 ==> No incident radiation.
We observe f, for stars: not F.*

Inward p: -1 <p <0 Outward p: 0 < p < -1
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Moments of the Radiation Field

M (z,n) = 1/2]_11 | (2, ) 1"d 1
Order 0 : (the Mean Intensity)

1, =12] 1(z.pmdp

Order 1: (the Eddington Flux)

1
H.(@)=1/2] 1,z mpdp
Order 1: (the K Integral)

K (2)= 1/2]_11 | (2, 1)1
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Invariance of the Specific Intensity

* The definition of the specific intensity leads to invariance.

S Consider the ray packet
P 0 S g ' which goes through dA at P
dA

dA’ and dA' at P'

dE, = I dAcosfdwdvdt = I 'dA'cost'dw'dvdt
* dw = solid angle subtended by dA' at P = dA'cosf'/r?
 dw' = solid angle subtended by dA at P' = dAcosf/t?
e dE, = I dAcosd dA'cos0'/1? dvdt = 1 'dA'cos0'd Acos /1
Vel
* Thismeans I, =1
* Note that dE, contains the inverse square law.
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Energy Density I

Consider an infinitesimal volume V into which
energy flows from all solid angles. From a specific
solid angle dw the energy flow through an element of
area dA 1s

oE = I dAcosbdmdvdt

Consider only those photons in flight across V. If
their path length while in V 1s £, then the time in V 1s
dt = f/c. The volume they sweep 1s dV = LdAcos®.
Put these into oE.:

oE, =L, (dV/fcos0) cosb dw dv t/c
oE, = (1/¢) I, dodvdV
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Energy Density 11

= Now integrate over volume
= E dv =[(1/c)lydVerl do]dv

m Let V — 0: then [, can be assumed to be
independent of position in V.

m Define Energy Density U, =E /V
m E =(V/ic)erl do
m U =(l/c) erl do = (4n/c) J,

m J = (1l/4n)erl do by definition
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Photon Momentum Transfer

m Momentum Per Photon = mc = mc?/c = hv/c
m Mass of a Photon = hv/c?

m Momentum of a pencil of radiation with
energy dE, = dE, /c
s dp(v) = (1/dA) (dE,cos0/c)

= ((I,dAcosOBdm)cos0) / cdA
=] cos*0dm/c

= Now integrate: p(v)= (1/c) er' I cos*Odw
= (4n/c)K,
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Radiation Pressure

Photon Momentum Transport Redux

m [t is the momentum rate per unit and per unit solid angle
= Photon Flux * (”m”v per photon) * Projection Factor

= dp,(v) = (dE,/(hvdtdA)) * (hv/c) * cosd where dE, =
[ dvdAcosBdwdt so dp(v) = (1/c) I cos*’6dmdv

m [ntegrate dp,(v) over frequency and solid angle:

_ L 2
pr—gjo 4ﬂlvcos dd wdv

Or in terms of frequency

p, (V) _EL;Z | cos” Bdw
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Isotropic Radiation Field
I(w) # £

K (2)= 1/2]_11 | 2d 1

1 :1/2IV_[1 wd
=1/21, () _13
=1/21,(1-(=1)) =1/21,(5-1)
—1/21 (1/3—(~1/3))
L

~J /3

J(2)= 1/2[_11 | (2)d

:|V




