Basic Definitions

Terms we will need to discuss radiative transfer.

Specific Intensity I

n

ŝ

- $I_v(\mathbf{r}, \mathbf{n}, t) \equiv$ the amount of energy at position \mathbf{r} (vector), traveling in direction \mathbf{n} (vector) at time t per unit frequency interval, passing through a unit area oriented normal to the beam, into a unit solid angle in a second (unit time).
- If θ is the angle between the normal s (unit vector) of the reference surface dA and the direction n then the energy passing through dA is

 $dE_v = I_v(\mathbf{r},\mathbf{n},t) dA \cos(\theta) dv d\omega dt$

I_v is measured in erg Hz⁻¹ s⁻¹ cm⁻² steradian⁻¹

Specific Intensity II

- We shall only consider time independent properties of radiation transfer
 - Drop the t
- We shall restrict ourselves to the case of planeparallel geometry.
 - Why: the point of interest is d/D where d = depth of atmosphere and D = radius of the star.
 - The formal requirement for plane-parallel geometry is that $d/R \sim 0$
 - For the Sun: $d \sim 500 \text{ km}$, $D \sim 7(10^5) \text{ km}$
 - $d/D \sim 7(10^{-4})$ for the Sun
 - The above ratio is typical for dwarfs, supergiants can be of order 0.3.

Specific Intensity III

- Go to the geometric description (z,θ,φ) - polar coordinates
 - \bullet θ is the polar angle
 - $\bullet \phi$ is the azimuthal angle
 - Z is with respect to the stellar boundary (an arbitrary idea if there ever was one).
 - Z is measured positive upwards
 - + above "surface"
 - below "surface"

Mean Intensity: $J_v(z)$

Simple Average of I over all solid angles

$$J_{\nu} = \oint I_{\nu}(z,\theta,\phi) d\omega / \oint d\omega$$

but

$$\oint d\omega = \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} \sin\theta d\theta d\phi = 4\pi$$

Therefore

$$J_{\nu} = (1/4\pi) \int_0^{2\pi} d\phi \int_0^{\pi} I_{\nu}(z,\theta,\phi) \sin\theta d\theta$$

I_v is generally considered to be independent of φ so

$$J_{\nu} = 1/2 \int_0^{\pi} I_{\nu}(z,\theta) \sin\theta d\theta$$
$$= 1/2 \int_{-1}^1 I_{\nu}(z,\mu) d\mu$$

• Where $\mu = \cos\theta \Longrightarrow d\mu = -\sin\theta d\theta$

The lack of azimuthal dependence implies homogeneity in the atmosphere.
Basic Definitions

Physical Flux

■ Flux = Net rate of Energy Flow across a unit area. It is a vector quantity.

$$F_{\nu}^{P} = \oint I_{\nu}(\vec{r},\vec{n})\vec{n}d\omega$$

Go to (z, θ, ϕ) and ask for the flux through one of the plane surfaces:

$$F_{\nu}^{P} = F_{\nu}^{P} \cdot \hat{k} = \oint I_{\nu}(z,\theta,\phi) \cos\theta d\alpha$$
$$= 2\pi \int_{-1}^{1} I_{\nu}(z,\mu) \mu d\mu$$

Note that the azimuthal dependence has been dropped!

Astrophysical Flux

 $\overline{F_{v}^{A}} = (1/\pi) \overline{F_{v}^{P}}$ $= 2 \int_{-1}^{1} I_{v}(z,\mu) \mu d\mu$

• F_{v}^{P} is related to the observed flux!

- R = Radius of star
- D = Distance to Star
- D>>R \rightarrow All rays are parallel at the observer

• Flux received by an observer is $df_v = I_v d\omega$ where

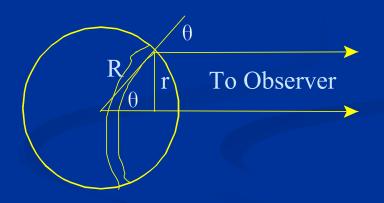
- $d\omega$ = solid angle subtended by a differential area on stellar surface
- $I_{\nu} = \text{Specific intensity of that area.}$

θ

To Observer

Astrophysical Flux II

For this Geometry: $dA = 2\pi r dr$ but $R \sin \theta = r$ $d\mathbf{r} = \mathbf{R} \cos\theta d\theta$ $dA = 2R \sin\theta R\cos\theta d\theta$ $dA = 2R^2 \sin\theta \cos\theta d\theta$ Now $\mu = \cos\theta$ $dA = 2R^2 \mu d\mu$ By definition $d\omega = dA/D^2$ $d\omega = 2(R/D)^2 \mu d\mu$



Astrophysical Flux III

Now from the annulus the radiation emerges at angle θ so the appropriate value of I_{ν} is $I_{\nu}(0,\mu)$. Now integrate over the star: Remember $df_{\nu}=I_{\nu}d\omega$

$$f_{\nu} = 2\pi (\frac{R}{D})^2 \int_0^1 I_{\nu}(0,\mu) \mu d\mu$$
$$= (\frac{R}{D})^2 F_{\nu}^P = (\frac{R}{D})^2 \pi F_{\nu}^A$$

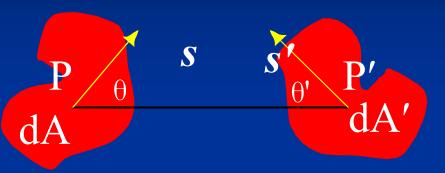
NB: We have assumed $I(0,-\mu) = 0 ==>$ No incident radiation. We observe f_{ν} for stars: not F_{ν}^{P}

Inward μ : $-1 < \mu < 0$ Outward μ : $0 < \mu < -1$

Moments of the Radiation Field $M_{\nu}(z,n) = 1/2 \int_{-1}^{1} I_{\nu}(z,\mu) \mu^{n} d\mu$ **Order 0**: (the Mean Intensity) $J_{v}(z) = 1/2 \int_{-1}^{1} I_{v}(z,\mu) d\mu$ **Order 1: (the Eddington Flux)** $H_{\nu}(z) = 1/2 \int_{-1}^{1} I_{\nu}(z,\mu) \mu d\mu$ **Order** 1: (the K Integral) $K_{\nu}(z) = 1/2 \int_{-1}^{1} I_{\nu}(z,\mu) \mu^2 d\mu$

Invariance of the Specific Intensity

• The definition of the specific intensity leads to invariance.



Consider the ray packet which goes through dA at P and dA' at P'

 $dE_{\nu} = I_{\nu}dA\cos\theta d\omega d\nu dt = I_{\nu}'dA'\cos\theta' d\omega' d\nu dt$

- $d\omega = solid angle subtended by dA' at P = dA'cos\theta'/r^2$
- $d\omega' = solid angle subtended by dA at P' = dAcos\theta/r^2$
- $dE_v = I_v dA\cos\theta dA'\cos\theta'/r^2 dvdt = I_v' dA'\cos\theta' dA\cos\theta/r^2 dvdt$
- This means $I_v = I_v'$
- Note that dE_{ν} contains the inverse square law.

Energy Density I

- Consider an infinitesimal volume V into which energy flows from all solid angles. From a specific solid angle do the energy flow through an element of area dA is
- $\delta E = I_v dA \cos\theta d\omega dv dt$
- Consider only those photons in flight across V. If their path length while in V is ℓ, then the time in V is dt = ℓ/c. The volume they sweep is dV = ℓdAcosθ. Put these into δE_v:
- $\bullet \delta E_v = (1/c) I_v d\omega dv dV$

Energy Density II

Now integrate over volume $= E_{v} dv = [(1/c) \int_{V} dV e \tau I_{v} d\omega] dv$ \blacksquare Let V \rightarrow 0: then I, can be assumed to be independent of position in V. • Define Energy Density $U_v \equiv E_v/V$ $\underline{E}_v = (V/c) e_r I_v d\omega$ $\underline{U}_{v} = (1/c) er I_{v} d\omega = (4\pi/c) J_{v}$ $I_{\nu} = (1/4\pi) e_{\tau} I_{\nu} d\omega$ by definition

Photon Momentum Transfer

■ Momentum Per Photon = $mc = mc^2/c = hv/c$ • Mass of a Photon = hv/c^2 Momentum of a pencil of radiation with energy $dE_v = dE_v/c$ $\square dp_r(v) = (1/dA) (dE_v \cos\theta/c)$ = $((I_v dA \cos\theta d\omega) \cos\theta) / cdA$ $= I_v \cos^2\theta d\omega/c$ Now integrate: $p_r(v) = (1/c) e \Gamma I_v \cos^2\theta d\omega$ $= (4\pi/c)K_{...}$

Radiation Pressure

Photon Momentum Transport Redux

- It is the momentum rate per unit and per unit solid angle = Photon Flux * ("m"v per photon) * Projection Factor
 dp_r(v) = (dE_v/(hvdtdA)) * (hv/c) * cosθ where dE_v = I_vdvdAcosθdωdt so dp_r(v) = (1/c) I_vcos²θdωdv
- Integrate $dp_r(v)$ over frequency and solid angle:

$$p_r = \frac{1}{c} \int_0^\infty \int_{4\pi} I_v \cos^2 \theta d\omega dv$$

Or in terms of frequency

$$p_r(v) = \frac{1}{c} \int_{4\pi} I_v \cos^2 \theta d\omega$$

$$=\frac{4\pi}{c}K_{\nu}$$

Basic Definitions

Isotropic Radiation Field $I(\mu) \neq f(\mu)$

$$J_{\nu}(z) = 1/2 \int_{-1}^{1} I_{\nu}(z) d\mu$$

= $1/2 I_{\nu}(\mu |_{-1}^{1})$
= $1/2 I_{\nu}(1-(-1))$
= I_{ν}

$$K_{v}(z) = 1/2 \int_{-1}^{1} I_{v} \mu^{2} d\mu$$

= $1/2 I_{v} \int_{-1}^{1} \mu^{2} d\mu$
= $1/2 I_{v} (\frac{\mu^{3}}{3} |_{-1}^{1})$
= $1/2 I_{v} (1/3 - (-1/3))$
= $I_{v}/3$
= $J_{v}/3$