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Specific Heat of GasesSpecific Heat of Gases

►► Consider the gas as elastic spheresConsider the gas as elastic spheres
No forces during collisionsNo forces during collisions
All energy internal to the gas must be kineticAll energy internal to the gas must be kinetic
Per mole average translational KE is 3/2 Per mole average translational KE is 3/2 kTkT per particleper particle
The internal energy U of an ideal gas containing N particles is The internal energy U of an ideal gas containing N particles is 
U = 3/2 N U = 3/2 N kTkT = 3/2 = 3/2 μμ RTRT

►► This means the internal energy of an ideal gas is merely This means the internal energy of an ideal gas is merely 
proportional to the absolute temperature of a gasproportional to the absolute temperature of a gas
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Heat CapacityHeat Capacity

►►Molar heat capacity C is a specific heatMolar heat capacity C is a specific heat
It is the heat (energy) per unit mass (mole) per unit It is the heat (energy) per unit mass (mole) per unit 
temperature changetemperature change
It has two components:It has two components: CCp p and Cand CVV
►►CCp p is the heat capacity at constant pressureis the heat capacity at constant pressure
►►CCvv is the heat capacity at constant volume.is the heat capacity at constant volume.
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Heat CapacitiesHeat Capacities
►►Consider a piston arrangement in which heat can Consider a piston arrangement in which heat can 

be added/subtracted at will.be added/subtracted at will.
The piston can be altered for constant volume if The piston can be altered for constant volume if 
desired.desired.

P

V

a

b
c

• Consider a b : a constant volume process
• T T + T
• P P + P
• V V

• First Law:  dU = dQ – dW
• Q = U + W
• Q = μCv T (definition of a heat capacity)
• W = p V = 0
• Q = μCv T = U

• NB: this can be arranged so that T is the same
in both cases a b and a c !
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Now an Isobaric Change:  a Now an Isobaric Change:  a cc
► Consider a c : a constant pressure process

T T + T
P P
V V + V

► Q = μCp T (definition of heat capacity)
► W = p V
► Q = μCp T = U‘ + p V
► For an ideal gas U depends only on temperature and 

T was the same (!) so U = U‘
► μCp T = μCv T + p V

Apply the perfect gas law to the constant pressure change:  
p V = μR T

► μCp T = μCv T + μR T
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Heat CapacitiesHeat Capacities
► μCp T = μCv T + μR T

Cp = Cv + R
Cp - Cv = R

► Now we know U = 3/2 μRT
dU / dT = 3/2 μR

► U = μCv T
U / T = μCv

3/2 μR = μCv

► Cv = 3/2 R
Good for monatomic gases, terrible for diatomic and 
polyatomic gases.
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PVPVγγ

►►We shall now prove that We shall now prove that PVPVγγ is a constant for an is a constant for an 
ideal gas undergoing an adiabatic processideal gas undergoing an adiabatic process
γγ = C= Cpp / / CCvv

Adiabatic process: Adiabatic process: Q = 0 (No heat exchange)Q = 0 (No heat exchange)
► Q = U + W
►0 = μCv T + p V
► T = -p V / μCv
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ContinuingContinuing
►► For an ideal gas: For an ideal gas: pVpV = = μμRTRT

pp VV + + VV pp = = μμRR TT
T = (T = (pp VV + + VV pp) / ) / μμRR = = --p V / μCv

-R p V = Cv pp VV + + Cv V pp
--(C(Cpp –– CCvv) ) p V = Cv pp VV + + Cv V pp
--CCp p p V - Cv VV pp = 0= 0
CCp p p V + Cv VV pp = 0= 0
Divide by p V Divide by p V Cv:
CCp p // Cv V/V + p/pp/p = 0= 0
γγ dVdV/V + /V + dp/pdp/p = 0  (take to limits)= 0  (take to limits)
lnln p + p + γγ lnln V = const.V = const.

►► PVPVγγ = const= const
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EquipartitionEquipartition
►► Kinetic Energy of translation per mole is 3/2 RTKinetic Energy of translation per mole is 3/2 RT

►► All terms are equal or each is All terms are equal or each is ½½ RTRT
►► The gas is monatomic so The gas is monatomic so 

U = 3/2nRTU = 3/2nRT
CCvv = 3/2 R= 3/2 R
►►CCpp –– CCvv = R= R
►►CCpp = 5/2 R= 5/2 R

γγ = C= Cpp//CCvv = 5/3 = 1.67= 5/3 = 1.67

2 2 21 1 1 3
2 2 2 2x y zMv Mv Mv RT+ + =
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Diatomic MoleculeDiatomic Molecule

►► Consider a diatomic molecule: It can rotate and vibrate!Consider a diatomic molecule: It can rotate and vibrate!
IIωωyy

22 = I= Iωωzz
2 2 = = ½½ RT RT 

U = 5/2 U = 5/2 nRTnRT
dU/dTdU/dT = 5/2 = 5/2 RnRn

►► CCvv = = dU/ndTdU/ndT = 5/2 R= 5/2 R
CCpp = = CCvv + R = 7/2 R+ R = 7/2 R
γγ = C= Cpp//CCvv = 7/5 = 1.4= 7/5 = 1.4

►► For For polyatomicspolyatomics we must add another we must add another ½½ RT as there is RT as there is 
one more axis of rotation.one more axis of rotation.

γγ = C= Cpp//CCvv = 1.33= 1.33
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Thermodynamic ValuesThermodynamic Values

4/34/34R4R
7.947.94

3R3R
5.965.96

3kT3kT3/2kT3/2kTPolyatomicPolyatomic

7/57/57/2R7/2R
6.956.95

5/2R5/2R
4.974.97

5/2kT5/2kT3/2kT3/2kTDiatomicDiatomic

5/35/35/2R5/2R
4.974.97

3/2R3/2R
2.982.98

3/2kT3/2kT3/2kT3/2kTMonatomicMonatomic

γγCCppCCvvUUKEKEParticleParticle
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Thermodynamic ProcessesThermodynamic Processes

►►Irreversible:  Rapid change (PIrreversible:  Rapid change (Pii, V, Vii) ) (P(Pff, , VVff))
The path cannot be mapped due to turbulence; The path cannot be mapped due to turbulence; ieie, the , the 
pressure in particular is not well defined.pressure in particular is not well defined.

►►Reversible:  Incremental changes leading to Reversible:  Incremental changes leading to 
““quasi steady statequasi steady state”” changes from (Pchanges from (Pii, V, Vii) ) (P(Pff, , 
VVff))

►►Irreversible is the way of nature but reversible Irreversible is the way of nature but reversible 
can be approached arbitrarily closely.can be approached arbitrarily closely.
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CarnotCarnot Cycle: ReversibleCycle: Reversible

P

V

A: P1,V1,TH

B: P2,V2,TH

C: P3,V3,TC

D: P4,V4,TC

A B: Isothermal - QH input – Gas does work

B C: Adiabatic – Work Done

C D: Isothermal  
QC exhaust –
Work done on 
Gas

D A: 
Adiabatic –
TC TH
Work Done 
on Gas
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CarnotCarnot ProcessProcess

►► Step 1:  Equilibrium State (pStep 1:  Equilibrium State (p11, V, V11, T, THH))
Place on a temperature reservoir at TPlace on a temperature reservoir at TH H and and expandexpand to (pto (p22, V, V22, T, THH) ) 
absorbing Qabsorbing QHH. The process is isothermal and the gas does work.. The process is isothermal and the gas does work.

►► Step 2:  Place on a nonStep 2:  Place on a non--conducting stand.conducting stand.
Reduce load on piston and go to (pReduce load on piston and go to (p33, V, V33, T, TCC).  This is an adiabatic ).  This is an adiabatic 
expansion and the gas does work.expansion and the gas does work.

►► Step 3: Place on a heat reservoir at TStep 3: Place on a heat reservoir at TC C and compress slowly.and compress slowly.
The gas goes to (pThe gas goes to (p44, V, V44, T, TCC).  Q).  QC C is removed from the piston isothermally.is removed from the piston isothermally.

►► Step 4:  Place on a nonStep 4:  Place on a non--conducting stand and compress slowly.conducting stand and compress slowly.
The gas goes to (pThe gas goes to (p11, V, V11, T, THH).  This is an adiabatic compression with work ).  This is an adiabatic compression with work 
being done on the gas.being done on the gas.
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CarnotCarnot CycleCycle
►►Net Work:  Area enclosed by the Net Work:  Area enclosed by the pVpV lines.lines.
►►Net Heat Absorbed:  QNet Heat Absorbed:  QHH –– QQCC

►►Net Change in U is 0 (initial = final)Net Change in U is 0 (initial = final)
►►W = QW = QHH –– QQC C so heat is converted to work!so heat is converted to work!

QQH H energy inputenergy input
QQC C is exhaust energyis exhaust energy

►►Efficiency is e = W / QEfficiency is e = W / QHH = 1 = 1 –– QQCC / Q/ QHH

e = 1 e = 1 –– TTCC/T/THH
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ProofProof
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More Fun StuffMore Fun Stuff
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The Second LawThe Second Law

►► ClausiusClausius:  It is not possible for any cyclical engine to :  It is not possible for any cyclical engine to 
convey heat continuously from one body to another at a convey heat continuously from one body to another at a 
higher temperature without, at the same time, producing higher temperature without, at the same time, producing 
some other (compensating) effect.some other (compensating) effect.

►► KelvinKelvin--Planck:  A transformation whose only final Planck:  A transformation whose only final 
result is to transform into work heat extracted from a result is to transform into work heat extracted from a 
source that is at the same temperature throughout is source that is at the same temperature throughout is 
impossible.impossible.
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EntropyEntropy
►► Consider a Consider a CarnotCarnot Cycle.Cycle.

QQHH/T/THH = Q= QCC/T/TCC

But WRT to QBut WRT to QHH QQCC is negative andis negative and
►►QQHH/T/TH H + Q+ QCC/T/TC C = 0= 0

►► Any arbitrary cycle can be thought of as the sum of Any arbitrary cycle can be thought of as the sum of 
many many CarnotCarnot cycles spaced arbitrarily close together.cycles spaced arbitrarily close together.

Q/T = 0 for the arbitrary cycleQ/T = 0 for the arbitrary cycle
For an infinitesimal For an infinitesimal ∆∆T from isotherm to isotherm:T from isotherm to isotherm:

0dQ
T

=∫
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Entropy IIEntropy II
►► is the line integral about the complete cycleis the line integral about the complete cycle
►►If If is 0 then the quantity is called a state is 0 then the quantity is called a state 

variablevariable
T, p, U are all state variablesT, p, U are all state variables

►►We define We define dSdS = = dQdQ/T as the change in the /T as the change in the 
entropy (S) and entropy (S) and dSdS = 0 which means that = 0 which means that 
entropy does not change around a closed cycle.entropy does not change around a closed cycle.

►►For a reversible cycle the entropy change For a reversible cycle the entropy change 
between two states is independent of path.between two states is independent of path.
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Entropy For a Reversible ProcessEntropy For a Reversible Process

1 2

1 2

1 2

0

0

0

b b

a a

b b

a a

b b

a a

dS

ds ds

ds ds

=

+ =

− =

∴ =

∫

∫ ∫

∫ ∫

∫ ∫

The change in entropy from 
reversible state a to b is thus:

b b

b a
a a

dQS S dS
T

− = =∫ ∫
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Entropy and Irreversible ProcessesEntropy and Irreversible Processes
►►Free Expansion:Free Expansion: W = 0, Q = 0 (adiabatic), so W = 0, Q = 0 (adiabatic), so 
∆∆U = 0 or U = 0 or UUff= = UUii soso TTff = T= Ti i as U depends only as U depends only 
on T)on T)

►►How do we calculate How do we calculate SSff –– SSii –– we do not know we do not know 
the path!the path!

First find a reversible path between i and f and the First find a reversible path between i and f and the 
entropy change for that.entropy change for that.
►►Isothermal Expansion from VIsothermal Expansion from Vii to to VVff

►►SSff –– SSii = = ∫∫dQdQ/T = /T = nRln(VnRln(Vff/V/Vii))
►►The above is always positive!The above is always positive!
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22ndnd Law and EntropyLaw and Entropy

►►Reversible:  Reversible:  dSdS = 0 or = 0 or SSff = = SSii

►►Irreversible:  Irreversible:  SSff > > SSii
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Isothermal ExpansionIsothermal Expansion

1 1

1

1

ln( )f

i

W pdV Q

dQ dW pdV

dS dQ pdV
T T
nRT dV

T V

nR dV
V

V
nR

V

Δ = = Δ

= =

= =

=

=

=

∫
∫ ∫ ∫

∫ ∫ ∫

∫

∫
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A Better Treatment of Free ExpansionA Better Treatment of Free Expansion

►► Imagine a gas confined within an insulated container as Imagine a gas confined within an insulated container as 
shown in the figure below. The gas is initially confined shown in the figure below. The gas is initially confined 
to a volume V1 at pressure P1 and temperature T1. The to a volume V1 at pressure P1 and temperature T1. The 
gas then is allowed to expand into another insulated gas then is allowed to expand into another insulated 
chamber with volume V2 that is initially evacuated. chamber with volume V2 that is initially evacuated. 
What happens? LetWhat happens? Let’’s apply the first law.s apply the first law.
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Free ExpansionFree Expansion
►►We know from the first law for a closed system We know from the first law for a closed system 

that the change in internal energy of the gas will that the change in internal energy of the gas will 
be equal to the heat transferred plus the amount be equal to the heat transferred plus the amount 
of work the gas does, or . Since the gas expands of work the gas does, or . Since the gas expands 
freely (the volume change of the system is zero), freely (the volume change of the system is zero), 
we know that no work will be done, so W=0. we know that no work will be done, so W=0. 
Since both chambers are insulated, we also know Since both chambers are insulated, we also know 
that Q=0. Thus, that Q=0. Thus, the internal energy of the gas the internal energy of the gas 
does not change during this processdoes not change during this process..



More Thermodynamics 27

Free ExpansionFree Expansion

►►We would like to know what happens to the We would like to know what happens to the 
temperature of the gas during such an expansion. temperature of the gas during such an expansion. 
To proceed, we imagine constructing a To proceed, we imagine constructing a 
reversible path that connects the initial and final reversible path that connects the initial and final 
states of the gas. The states of the gas. The actualactual free expansion is free expansion is 
notnot a reversible process, and we cana reversible process, and we can’’t apply t apply 
thermodynamics to the gas during the expansion. thermodynamics to the gas during the expansion. 
However, once the system has settled down and However, once the system has settled down and 
reached equilibrium after the expansion, we can reached equilibrium after the expansion, we can 
apply thermodynamics to the final state.apply thermodynamics to the final state.
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Free ExpansionFree Expansion
►► We know that the internal energy depends upon both temperature aWe know that the internal energy depends upon both temperature and volume, so we nd volume, so we 

write write 

where we have kept the number of molecules in the gas (N) constawhere we have kept the number of molecules in the gas (N) constant. The first term nt. The first term 
on the right side in equation (1) simply captures how U changes on the right side in equation (1) simply captures how U changes with T at constant with T at constant 
V, and the second term relates how U changes with V and constantV, and the second term relates how U changes with V and constant T. We can T. We can 
simplify this using Eulersimplify this using Euler’’s reciprocity relation, equation (2), where s reciprocity relation, equation (2), where x,y,zx,y,z are U,V,Tare U,V,T

obtain an expression for the change in gas temperature obtain an expression for the change in gas temperature 

, ,

0 (1)
V N T N

U UdU dT dV
T V

∂ ∂⎛ ⎞ ⎛ ⎞= = +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

1 (2)
x yz

x y z
y z x

⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎛ ⎞ = −⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

,

,

,

(3)T N

U N

V N

U
V TdT dV dV
U V
T

∂⎛ ⎞
⎜ ⎟∂ ∂⎝ ⎠ ⎛ ⎞= − = ⎜ ⎟∂ ∂⎛ ⎞ ⎝ ⎠
⎜ ⎟∂⎝ ⎠



More Thermodynamics 29

Free ExpansionFree Expansion
►► The term (The term (∂∂T/T/∂∂V)V)U,NU,N is a property of the gas, and is called the is a property of the gas, and is called the 

differential Joule coefficient. This name is in honor of James differential Joule coefficient. This name is in honor of James 
Prescott Joule, who performed experiments on the expansion Prescott Joule, who performed experiments on the expansion 
of gases in the midof gases in the mid--nineteenth century. If we can either nineteenth century. If we can either 
measure or compute the differential Joule coefficient, we can measure or compute the differential Joule coefficient, we can 
then then sayhowsayhow temperature changes (temperature changes (dTdT) with changes in ) with changes in 
volume (volume (dVdV). Let). Let’’s see how we might compute the Joule s see how we might compute the Joule 
coefficient from an equation of state. The simplest possible coefficient from an equation of state. The simplest possible 
equation of state is the ideal gas, where PV = equation of state is the ideal gas, where PV = nRTnRT. The easiest . The easiest 
way to find the Joule coefficient is to compute (way to find the Joule coefficient is to compute (∂∂U/U/∂∂V)V)TT and and 
((∂∂U/U/∂∂T)T)VV . Note that we have left off the subscript . Note that we have left off the subscript ““NN”” for for 
brevity, but we still require that the number of molecules in brevity, but we still require that the number of molecules in 
our system is constant.our system is constant.
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Free ExpansionFree Expansion

►► We can use the following identityWe can use the following identity

to show that           to show that           

so that              so that              

( / ) 0TU V∂ ∂ =

( / ) 0UT V∂ ∂ =

(4)
T V

U PT P
V T
∂ ∂⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
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Free ExpansionFree Expansion

►► If the gas is described by the van If the gas is described by the van derder WaalsWaals equation equation 
of stateof state

you can show that the term in the numerator of you can show that the term in the numerator of 
equation (3) is given byequation (3) is given by

( )
2

2 (5)anP V nb nRT
V

⎛ ⎞
+ − =⎜ ⎟

⎝ ⎠

2

2 (6)
T

U an
V V
∂⎛ ⎞ =⎜ ⎟∂⎝ ⎠
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Van Van derder WaalsWaals
►► Think about what equation (6) is telling us. Recall that the parThink about what equation (6) is telling us. Recall that the parameter ameter ““aa”” in the van in the van derder

WaalsWaals equation of state accounts for attractive interactions between equation of state accounts for attractive interactions between molecules. Equation molecules. Equation 
(6) therefore states that the internal energy of a system expand(6) therefore states that the internal energy of a system expanded at constant temperature ed at constant temperature 
willwill change, and this change is due to change, and this change is due to attractive interactions between moleculesattractive interactions between molecules. Since . Since 
the ideal gas equation of state neglects these interactions, it the ideal gas equation of state neglects these interactions, it predicts no change in the predicts no change in the 
internal energy upon expansion at constant temperature, but the internal energy upon expansion at constant temperature, but the van van derder WaalsWaals equation equation 
of state does account for this. The term in the denominator of eof state does account for this. The term in the denominator of equation (3) is nothing quation (3) is nothing 
more than the constant volume heat capacity (more than the constant volume heat capacity (∂∂U/U/∂∂T)T)VV = C= CVV .   It can be shown that C.   It can be shown that CVV is is 
never negative and only depends upon temperature for the van never negative and only depends upon temperature for the van derder WaalsWaals equation of equation of 
state. Since the parameter state. Since the parameter aa is also never negative, equations (3) and (6) tell us that is also never negative, equations (3) and (6) tell us that the the 
temperature of a real gas will always decrease upon undergoing atemperature of a real gas will always decrease upon undergoing a free expansionfree expansion.  .  
How much the temperature decreases depends upon the state point How much the temperature decreases depends upon the state point and the parameter and the parameter aa. . 
Molecules having strong attractive interactions (a large Molecules having strong attractive interactions (a large aa) should show the largest ) should show the largest 
temperature decrease upon expansion. We can understand this behatemperature decrease upon expansion. We can understand this behavior in a qualitative vior in a qualitative 
sense by imagining what happens to the molecules in the system wsense by imagining what happens to the molecules in the system when the expansion hen the expansion 
occurs. On average, the distance between any two molecules will occurs. On average, the distance between any two molecules will increase as the volume increase as the volume 
increases. If the intermolecular forces are attractive, then we increases. If the intermolecular forces are attractive, then we expect that the potential expect that the potential 
energy of the system will increase during the expansion. This poenergy of the system will increase during the expansion. This potential energy increase tential energy increase 
will come at the expense of the kinetic or thermal energy of thewill come at the expense of the kinetic or thermal energy of the molecules. Therefore the molecules. Therefore the 
raising of the potential energy through expansion causes the temraising of the potential energy through expansion causes the temperature of the gas to perature of the gas to 
decrease.decrease.
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Real GasesReal Gases

►►We can compute how much the temperature is We can compute how much the temperature is 
expected to decrease during a free expansion expected to decrease during a free expansion 
using the van using the van derder WaalsWaals equation of state. If one equation of state. If one 
performs this calculation for the expansion of performs this calculation for the expansion of 
oxygen from 10 bar at 300 K into a vacuum, the oxygen from 10 bar at 300 K into a vacuum, the 
temperature is found to be reduced by roughly temperature is found to be reduced by roughly 
4.4 K. 4.4 K. 


