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Speciiic Heat of Gases

Consider the gas as elastic spheres
No forces during collisions
All energy internal to the gas must be kinetic
Per mole average translational KE 1s 3/2 kT per particle
The internal energy U of an 1ideal gas containing N particles 1s
U=3/2 NKkT =3/2 uRT

This means the imnternal energy of an ideal gas 1s merely
proportional to the absolute temperature of' a gas
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Heat Capacity

Molar heat capacity C 1s a specific heat

[t 1s the heat (energy) per unit mass (mole) per unit
temperature change

It has two components: € and Cy,
C, 1s the heat capacity at constant pressure

C, 1s the heat capacity at constant volume.
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Heat Capacities

Consider a piston arrangement m which heat can
be added/subtracted at will.

The piston can be altered for constant volume it
desired.

e Consider a ¢ b : a constant volume process
o TST+ ¢T
ePSP+ %P
VeV
e First Law: dU = dQ — dW
e ¢Q = ¢U + ¢W
e $Q = pC,¢T (definition of a heat capacity)
e ¢¥W=p9V=0
e ¢Q = uC,¢T = ¢U
e NB: this can be arranged so that ¢T is the same
in both casesa $banda ¢ c!
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Now an [sobaric Change: a S c

COIlSideI‘ a ¢ C:aconstant pressurce process
TeT+ ¢T
P¢P
VeV+¢V

?Q=uC,¢T (definition of heat capacity)
*W=p ¢V

PQ=uC,#T=¢U'+p ¢V

For an ideal gas ¢ U depends only on temperature and
¢T was the same (!) so $U = ¢U*

uC, T =pC,#T+p ¢V

Apply the perfect gas law to the constant pressure change:
p?V =uR*®T

C, T =pC ®T + uUR?T
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Heat Capacities

uC, T =pC ®T + uUR?T
C,=C,+R
C,-C,=R

Now we know U = 3/2 uRT

dU/dT =3/2 uR
U =uC,¢T
U/ ¢T=pC,
3/2 uR = pC,
C,=32R
Good for monatomic gases, terrible for diatomic and
polyatomic gases.
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PVY

We shall now prove that PVYis a constant for an
ideal gas undergoing an adiabatic process
y=C,/C,

Adiabatic process: $Q = 0 (No heat exchange)
*Q=¢U+¢W
0=pC ®T+p*®V
*T=-p ¢V /uC,




Continuing

For an ideal gas: pV = puRT
p?V £ Vep=puR*T
T =(p*V +V®p)/uR=-p ¢V /puC,
-Rp#*V=C,p?*V+ C,V®p
(C,-C)p¢V=C,p?V+ C, V®p
-C,p?V-C, V#p=0
C,p¥V+C, Vep=0
Divide by p V C,:
C,/C,#V/V+#pp=0
v dV/V + dp/p = 0 (take to limits)
In'p + v In'V = const.

PVY = const
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Equipartition

Kinetic Energy of translation per mole 1s 3/2 RT

l|\/|\7X2+l|\/|\7y2+l|\/|\722 _3RT
2 2 2 2

All terms are equal or each 1s 72 RT

The gas 1s monatomic so
U = 3/2nRT
C,=32R
C,-C,=R
C,=52R
y=C,/C,=5/3=1.67
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Diatomic Molecule

Consider a diatomic molecule; It can rotate and vibrate!
02 =Iw? = %RT
U =5/2 nRT
dU/dT = 5/2 Rn

C, = dU/ndT = 5/2 R

C,=C,+R=72R

y=C/C,=7/5=14
FFor polyatomics we must add another 72 RT as there 1s
one more axis of rotation.

y=C,/C, =133
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Thermodynamic Values

Particle KE U C, C,

Monatomic

Diatomic

Polyatomic




Thermodynamic Processes

[rreversible: Rapid change (P, V) € (P, V)

The path cannot be mapped due to turbulence; ie, the
pressure in particular 1s not well defined.

Reversible: Incremental changes leading to
“quasi steady state” changes from (P, V) S (P,
Vi)

[rreversible 1s the way of nature but reversible
can be approached arbitrarily closely.




Carnot Cycle: Reversible

A: PV, T,

DA:
Adiabatic —
Tee Ty
Work Done :

on Gas B: P,,V,, T,

AsB: Isothermal - Q, input — Gas does work

D: PV, Tc B<C: Adiabatic — Work Done

C: P53V, Tc

CsD: Isothermal
Q¢ exhaust —
Work done on
Gas
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Carnot Process

Step 1: Equilibrium State (p;, Vi, Ty)

Place on a temperature reservoir at Ty, and expand to (p,, V,, Ty)
absorbing Q. The process is isothermal and the gas does work.

Step 2: Place on a non-conducting stand.

Reduce load on piston and go to (p3, V5, T). This 1s an adiabatic
expansion and the gas does work.

Step 3: Place on a heat reservoir at T and compress slowly.
The gas goes to (py, V4 To). Qp1s removed from the piston isothermally.

Step 4: Place on a non-conducting stand and compress slowly.

The gas goes to (py, V., Ty)- This is an adiabatic compression with work
being done on the gas.
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Carnot Cycle

Net Work: Arnea enclosed by the pV lies.

Net Heat Absorbed: Qpy — Q¢

Net Change m U 1s 0 (initial = final)

W = Q, — O so heat 1s converted to work!
Qy energy mmput
Q. 18 exhaust energy.

Elficiency ise =W / Q=1 —Q./ Qg
e=1-—1T./1,




Proot

Consider the ab path: ~or ab and cd (both isothermal)
AU =0 (isothermal) OV, = p.V,

\Y
Q, =W, =nRT, ln(V—z) 0.V, = p,V,
1

Similarly for the cd path: and pV”=C (adiabatic)

Vo Y
Q. =W. =nRT, ln(\\;—3) Vs = PsVs
: P, 4y = plvly




More Fun Stutt

p1V1 p3V3 P, 2y p4V47 - pzvz p4V4 P; 3y p1V1y
VVV =V
sz—lv47—1 L V37—1V17—1

(\/2\/4)7_1 : (\/3\/1)7_1
V.V, =V,
V, IV, =V, /V,




The Second Law

Clausius: It 1s not possible for any cyclical engine to
convey heat continuously from one body to another at a
higher temperature without, at the same time, producing
some other (compensating) effect.

Kelvin-Planck: A transformation whose only final
result 1s to transtorm mto work heat extracted from a
source that 1s at the same temperature throughout 1s
impossible.
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Entropy

Consider a Carnot Cycle.

Qu/Th = Qc/Tc
But WRT to Qy Qp 1s negative and
Qu/ Ty + Qc/Tc=0
Any arbitrary cycle can be thought of as the sum of
many Carnot cycles spaced arbitrarily close together.

+ Q/T = 0 for the arbitrary cycle
For an infinitesimal AT from isotherm to isotherm:

L
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Entropy: 11

er’'1s the line mtegral about the complete cycle
[1 er 1s 0 then the quantity 1s called a state
variable

T, p, U are all state variables
We detine dS = dQ/T as the change in the

entropy (S) and erdS = 0 which means, that
entropy does not change around a closed cycle.

For a reversible cycle the entropy change
between two states 1s independent of path.
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Entropy For a Reversible Process

The change in entropy from
reversible state a to b is thus:

Sb—Sa:TdS:idT—Q




Entropy and Irreversible Processes
Free Expansion: W = 0, Q = 0/ (adiabatic), so
AU = 0or U= U.so T,= T. as U depends only
on T)

How do we calculate S;— S. — we do not know

the path!

First find a reversible path between 1 and f and the
entropy change for that.

[sothermal Expansion {from V. to V.
S.—S. = [dQ/T =nRIn(V/V.)
The above is always positive!
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214 [Law and Entropy

Reversible: dS = 0or S;= S,
[rreversible: S.> S.




[sothermal Expansion
AW = j pdV = AQ
:dQ =jdvv =j pdV

ds——de——jpdv
J‘I’]RT

:nRIVdV

nR1 (Vf)
= 10
V




A Better Treatment of Free Expansion

Imagine a gas confined within an msulated container as
shown in the figure below. The gas 1s mitially confined
to a volume V1 at pressure Pl and temperature T1. The
gas then 1s allowed to expand into another msulated
chamber with volume V2 that 1s mitially evacuated.
What happens? LLet’s apply the first law.




Free Expansion

» We know from the first law for a closed system
that the change m internal energy of the gas will
be equal to the heat transterred plus the amount
of work the gas does, or . Since the gas expands
freely (the volume change of the system is zero),
we know that no work will be done, so W=0.
Since both chambers are msulated, we also know
that Q=0. Thus, the internal energy of the gas
does not change during this process.
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Free Expansion

» We would like to know what happens to the
temperature of the gas during such an expansion.
To proceed, we imagine constructing a
reversible path that connects the mitial and final
states of the gas. The actual free expansion is
not a reversible process, and we can’t apply
thermodynamics to the gas during the expansion.
However, once the system has settled down and
reached equilibrium after the expansion, we can
apply thermodynamics to the final state.
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Free Expansion

We know: that the internal energy depends upon both temperature and volume, so we

du:o:(a—uj aT +(8—Uj v (1)
T o v ),

write

where we have kept the number of molecules in the gas (N) constant. The first term
on the right side in equation (1) simply captures how U changes with T at constant
V, and the second term relates how U changes with V' and constant T. We can
simplify this using Euler’s reciprocity relation, equation (2), where x,y,z are U,V, T

HEE-
oy ),\oz J,\ox ),

obtain an expression for the change in gas temperature
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Free Expansion

» The term (0T/0V)y 18 a property of the gas, and is called the
differential Joule coefficient. This name is i honor of James
Prescott Joule, who performed experiments on the expansion
of gases 1n the mid-nineteenth century. If we can either
measure or compute the differential Joule coefficient, we can
then sayhow temperature changes (dT') with changes in

volume (dV). LLet’s see how we might compute the Joule
coelfficient from an equation of state. The simplest possible
equation of state is the ideal gas, where PV =nRT. The easiest
way to find the Joule coefiicient is to compute (0U/0V ) and
(OU/0T)y, . Note that we have left off the subscript “N* for
brevity, but we still require that the number of molecules in
our system 1s constant.
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FFree Expansion

We can use the following identity

BRI
oV ). \eT ),

to show that  (dU /oV ), =0

so that (0T /oV), =0



Free Expansion

If the gas 1s described by the van der Waals equation
ofi state

(P+?/—rf](v —nb) =nRT (5)

you can show that the term in the numerator of
equation (3) 1s given by

oU 2
(avl v ©




» Think about what equation (6) is telling us. Recall that the parameter “a

Van der Waals

(13 7,

in the van der
Waals equation of state accounts for attractive interactions between molecules. Equation
(6) therefore states that the imternal energy of a system expanded at constant temperature
will change, and this change is due to attractive interactions between molecules. Since
the ideal gas equation of state neglects these interactions, it predicts no change in the
iternal energy upon expansion at constant temperature, but the van der Waals equation
of state does account for this. The term in the denominator of equation (3) is nothing
more than the constant volume heat capacity (0U/0T);, = C;,. It can be shown that C;,
never negative and only depends upon temperature for the van der Waals equation of *
state. Since the parameter a is also never negative, equations (3) and (6) tell us that the
temperature of a real gas will always decrease upon undergoing a free expansion.
How much the temperature decreases depends upon the state point and the parameter a.
Molecules having strong attractive interactions (a large a) should show: the largest
temperature decrease upon expansion. We can understand this behavior in a qualitative
sense by imagining what happens to the molecules in the system when the expansion
occurs. On average, the distance between any two molecules will increase as the volume
increases. If the intermolecular forces are attractive, then we expect that the potential
energy of the system will increase during the expansion. This potential energy increase
will come at the expense of the kinetic or thermal energy of the molecules. Therefore the
raising of the potential energy through expansion causes the temperature of the gas to
decrease.
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Real Gases

We can compute how much the temperature 1s
expected to decrease during a free expansion
using the van der Waals equation of state. If one
performs, this calculation for the expansion of
oxygen {rom 10bar at 300 K mte a vacuum, the

temperature 1s found to be reduced by roughly
4.4 K.




