Radiation Kirchoff's Laws

 Light emitted by a blackbody, a hot opaque body, or hot dense gas produces a continuous spectrum

A hot transparent gas produces an emission line spectrum

 A cool transparent gas in front of a blackbody produces an absorption spectrum

Visually Kirchoff's Laws

Kirchoff's Laws

Top: solar spectrum
Bottom: iron emission line spectrum

What can you conclude about the Sun's chemical composition from this comparison?

Spectra

- Spectroscopy is the study of spectral lines, and it's very useful in astronomy. Over 80% of all astrophysical information is contained in <u>spectra</u> not in images.
 - chemical composition (spectral lines)
 - distance (redshift)
 - velocity (Doppler effect)
 - temperature (shape and type of spectral lines)
 - density (ratios of spectral line intensities)

The Planck Function

Blackbody Curves

The emitted energy distribution of a blackbody depends <u>only</u> on its temperature

$$B(\lambda,T) = \frac{2hc^2}{\lambda^5} \frac{1}{e^{(hc/\lambda kT)} - 1}$$

What is a Blackbody?

A perfect <u>emitter</u> and <u>absorber</u> of radiation; for example, black asphalt.

Stars are to a large part a good approximation to a blackbody.

Just to Convince You

From Silva and Cornell, 1992, ApJS 81, 865.

A Demonstration of the Properties of the Planck Function

Unfortunately the demo program accesses the hardware directly!

Interesting Results From the Planck Function!

- Wien's Law: $\lambda_{max} = 0.2898 / T$ (λ in cm) • Sun T = 5780 K ==> $\lambda_{max} = 5.01(10^{-5})$ cm = 5010 Å
- Stefan-Boltzman Law: $L = \sigma T^4$
 - Total Luminosity L = $4\pi R^2 \sigma T^4$
 - $\sigma = 5.67(10^{-5}) \text{ ergs s}^{-1} \text{ cm}^{-2} \text{ K}^{-4}$
 - Solar Luminosity = $3.862(10^{33})$ ergs s⁻¹
 - $R = 6.960(10^{10})$ cm
 - $L = 3.85(10^{33})$ ergs s⁻¹! ==> It works!

Stellar Properties

Mass
Temperature
Luminosity
Composition

Spectral Types

- O Stars: Strong Helium Lines (35000K)
- B Stars: Moderate Hydrogen lines and no Helium lines (20000K) - Rigel
- A Stars: Strong Hydrogen lines (12000K) -Vega
- F Stars: Moderate Hydrogen lines with ionized metal lines (7500K) - Procyon
 - G Stars: Weak Hydrogen lines with strong neutral metal lines (5500K) The Sun
 - K Stars: Very strong neutral metal with some molecules (4500K) Arcturus
- M Stars: Strong molecular features (3500K) -Betelgeuse

Stellar Mass

A Difficult Proposition at Best

	Dwarfs	Giants	Supergiants
O Stars:	30	30	
B Stars:	10	10	
• A Stars:	5	10	5-15
• F Stars:	3	5	5-15
G Stars:	1	3	5-15
K Stars:	0.7	1.5	5-15
M Stars:	0.3	1	5-15

Determination of Stellar Mass

A Very Difficult Problem

Mass of the Sun: From Kepler's 3rd Law

Kepler's 3^{rd} Law: $P^2 = ka^3$

P = Period of Planet

- a = semimajor axis of planet
- k = constant ($4\pi^2/GM_{\odot}$)
- G = Gravitional Constant

Determination of Stellar Mass

- Eclipsing Binaries
 - It is NOT possible to directly determine the mass of a single star.
 - Our only available tool is Kepler's Third Law.
 - $P^2 = ka^3$
 - where P= Period of the system
 - $k = 4\pi^2/G(M_1 + M_2)$
 - a = Separation of the components
- Why Eclipsing Binaries?
 - Inclination of the Orbit!

Composition

The Sun Is the Common Reference Point

		Number	Mass
	Hydrogen	10 ¹²	70%
	Helium	10 ¹¹	28%
	Lithium	10 ^{1.00}	
	Carbon	10 ^{8.55}	
	Nitrogen	10 ^{7.99}	
	Oxygen	10 ^{8.75}	
	Silicon	10 ^{7.55}	
•	Calcium	10 ^{6.36}	
	Iron	10 ^{7.50}	
	Barium	10 ^{2.13}	

A Stellar High Resolution Spectrum

The Definition of Magnitudes

Pogson's Ratio

- A difference of five (5) magnitudes is defined as an energy ratio of 100.
- Therefore: 1 magnitude = 100**0.2 = 2.512 difference in energy.
 - $2.512^5 = 100$
- If star 1 is 1 magnitude brighter than star 2 then:

 $l_1 / l_2 = 2.512$

where his the received energy (ergs, photons).

More on Magnitudes

- Or in general: If star 1 is of magnitude m1 and star 2 is of magnitude m2 (star 1 brighter than star 2): $l_1 / l_2 = 2.512^{-(m_1 m_2)}$
 - The sign is necessary as the brighter the star the numerically less the magnitude.
 - This means: $m_1 = -2.5 \log I_1$ and $m_2 = -2.5 \log I_2!$
- Now convert the equation to base 10:

$$l_1 / l_2 = (10^{0.4})^{-(m_1 - m_2)} = 10^{-0.4(m_1 - m_2)}$$

Band Passes

 A Band pass is the effective wavelength range that a filter (colored glass in the case of Johnson filters and interference filters for narrow band systems) transmits light.

Apparent and Absolute Magnitudes

• Apparent Magnitude:

- Magnitude as observed on the Earth
- Apparent magnitudes depend on wavelength.
- Sirius has apparent magnitudes of
 - m_v = -1.46
 - m_B = -1.46
 - m_U = -1.51

Absolute Magnitude

- (Apparent) Magnitude a star would have if it were at a distance of 10 parsecs from the Sun
 - Makes it possible to directly compare intrinsic brightnesses of stars.
 - Just like apparent magnitudes absolute magnitudes are wavelength dependent.

Absolute Magnitudes

Let I_d = energy observed from star at distance d
 Let I₁₀ = energy observed from star at 10 pc

$$l_d / l_{10} = (1/d^2) / (1/10^2) = 10^2 / d^2 = 10^{-0.4(m_d - m_{10})}$$

Call m_d the apparent magnitude m and m₁₀ the absolute magnitude M.
 d = distance in parsecs.

The Distance Modulus $100/d^2 = 10^{-0.4(m-M)}$ $\log(100/d^2) = -0.4(m-M)$ $2.5(\log(100) - 2\log(d)) = -(m - M)$ $5-5\log(d) = -(m-M)$ $5\log(d) - 5 = m - M$ Or $5(\log(d) - 1) = m - M$ $5(\log(d) - \log(10)) = m - M$ $5\log(d/10) = m - M$

Distance Modulus II

m - M is the distance modulus

- 0 = 10 pc
- 5 = 100 pc
- Each 5 magnitude increase is a factor of 10 in distance: 10² = 100 ==> 5 magnitudes!
- If there is interstellar absorption then
 - 5 log (d/10) = m M A
 - A = absorption in magnitudes.
 - m = apparent (observed) magnitude
 - $m = (m_0 + A)$ where m_0 is what the observed magnitude would be if there were no absorption.
- m, M, and A are all wavelength dependent.

Bolometric Magnitude

• Wavelength independent magnitude.

- L = 4R²σT⁴ and is the total (wavelength integrated) luminosity of a star.
- M_{bol} = -2.5 log (L) [Absolute Bolometric Magnitude]
- The observed bolometric magnitude is:

$$m_{bol} = -2.5\log(\int_0^\infty F_\lambda d\lambda)$$

- Where F is the observed flux (energy).
- The bolometric correction is defined as
 - $M_{bol} = M_V + BC$ (Note that one could use other wavelengths (filters).

Solar Bolometric Magnitude

• First: $\frac{L}{L_u} = 10^{-0.4(m_{bol} - m_{bol}^u)}$

• What is the bolometric magnitude of the Sun?

- $m_v = -26.74$ BC = -0.07
- $m_v M_v = 5 \log (d/10)$
- $d = (206265)^{-1} pc$
- Plug in the numbers: $M_V = +4.83$ and $M_{bol} = +4.76$
- The solar luminosity = $3.82 (10^{33})$ ergs s⁻¹