Radiation Kirchoff's Laws

- Light emitted by a blackbody, a hot opaque body, or hot dense gas produces a continuous spectrum **- A hot transparent gas produces an** emission line spectrum **- A cool transparent gas in front of a** blackbody produces an absorption

spectrum

Visually Kirchoff's Laws

Kirchoff's Laws

Ш

• Top: solar spectrum • Bottom: iron emission line spectrum

What can you conclude about the Sun's chemical composition from this comparison?

Spectra

- Spectroscopy is the study of spectral lines, and it's very useful in astronomy. Over 80% of all astrophysical information is contained in astrophysical information is contained in **spectra spectra** not in images.
	- chemical composition (spectral lines)
	- \bullet distance (redshift)
	- **velocity (Doppler effect)**
	- temperature (shape and type of spectral lines)
	- density (ratios of spectral line intensities)

The Planck Function

Blackbody Curves

The emitted energy distribution of a blackbody depends only on its temperature

$$
B(\lambda,T)=\frac{2hc^2}{\lambda^5}\frac{1}{e^{(hc/\lambda kT)}-1}
$$

What is a Blackbody?

A perfect emitter and absorber of radiation; for example, black asphalt.

Stars are to a large part a good approximation to a good approximation to a blackbody.

Just to Convince You Just to Convince You

From Silva and Cornell, 1992, ApJS 81, 865.

A Demonstration of the Properties of the Planck Function

Unfortunately the demo program accesses the hardware directly!

Interesting Results From the **Planck Function!**

- Wien's Law: λ_{max} = 0.2898 / T (λ in cm) \bullet Sun T = 5780 K ==> λ_{max} = 5.01(10) 5) cm = 5010 Å
- Stefan-Boltzman Law: L = σT 4
	- \bullet Total Luminosity L = 4πR 2 σΤ 4
	- \bullet σ = 5.67(10-⁵) ergs s⁻¹ cm - 2 K - 4
	- \bullet Solar Luminosity = 3.862(10 33) ergs s⁻¹
	- \bullet R \neq 6.960(10¹⁰) cm
	- \bullet L = 3.85(10³³) ergs s⁻ 1! ==> It works! ! ==> It works!

Stellar Properties

• Mass \bullet **• Temperature** \bullet **• Luminosity** O **• Composition**

Spectral Types

- \bullet **O Stars: Strong Helium Lines (35000K)**
- \bullet **B Stars:** Moderate Hydrogen lines and no Helium lines (20000K) l **-**Rigel
- \bullet • A Stars: Strong Hydrogen lines (12000K) -Vega
- \bullet **F** Stars: Moderate Hydrogen lines with ionized metal lines (7500K) -- Procyon
- \bullet **G Stars:** Weak Hydrogen lines with strong neutral metal lines (5500K) - The Sun
	- K Stars: Very strong neutral metal with some molecules (4500K) <u>- Arcturus</u>
- \bullet M Stars: : Strong molecular features (3500K) - **Betelgeuse**

 \bullet

Stellar Mass

A Difficult Proposition at Best

Determination of Stellar Mass

A Very Difficult Problem

• Mass of the Sun: From Kepler's 3rd Law

• Kepler's 3rd Law: P 2 = ka 3

 \bullet

C

 \bullet

 \bullet

 \bullet

 $P = Period of Planet$

- $a =$ semimajor axis of planet
- \bullet $\qquad\qquad$ \qquad $\$
	- G = Gravitional Constant

Determination of Stellar Mass

- **Eclipsing Binaries**
	- \bullet It is NOT possible to directly determine the mass of a single star.
	- Our only available tool is Kepler's Third Law.
	- \bullet P² = ka 3
		- \bullet where P= Period of the system
		- \bullet k = 4π²/G(M₁ + M₂)
		- \bullet a = Separation of the components
- Why Eclipsing Binaries?
	- Inclination of the Orbit!

Composition

The Sun Is the Common Reference Point

A Stellar High Resolution Spectrum

The Definition of Magnitudes

Pogson's Ratio

- \bullet A difference of five (5) magnitudes is defined as an energy ratio of 100.
- Therefore: 1 magnitude = $100**0.2 = 2.512$ difference in energy.
	- \bullet 2.512⁵ = 100
- \bullet If star 1 is 1 magnitude brighter than star 2 then:

 l_1 / l_2 = 2.512

where l is the received energy (ergs, *photons*).

More on Magnitudes

- Or in general: If star 1 is of magnitude m1 and star 2 is of magnitude m2 (star 1 brighter than star 2): $(m_1 - m_2)$ $l_{_1}$ / $l_{_2} = 2.512^{-(m_{_1}-m_{_2})}$ =
	- \bullet The -- sign is necessary as the brighter the star the numerically less the magnitude.
	- \bullet This means: m₁ = -2.5 log l₁ and m₂ = -2.5 log l₂!
- Now convert the equation to base 10:

$$
l_1 / l_2 = (10^{0.4})^{-(m_1 - m_2)} = 10^{-0.4(m_1 - m_2)}
$$

Band Passes

 \bullet A Band pass is the effective wavelength range that a filter (colored glass in the (colored glass in the case of Johnson filters and interference filters for narrow band systems) transmits light.

Apparent and Absolute Magnitudes

• Apparent Magnitude:

- \bullet Magnitude as observed on the Earth
- \bullet Apparent magnitudes depend on wavelength.
- Sirius has apparent magnitudes of
	- \bullet m $_{\rm V}$ = -1.46
	- \bullet m $_{\rm B}$ = -1.46
	- \bullet m $_{\rm U}$ = -1.51
- **Absolute Magnitude**
	- (Apparent) Magnitude a star would have if it were at a distance of 10 parsecs from the Sun
		- Makes it possible to directly compare intrinsic brightnesses of stars.
		- \bullet Just like apparent magnitudes absolute magnitudes are wavelength dependent.

Absolute Magnitudes

• Let I_d = energy observed from star at distance d • Let I_{10} = energy observed from star at 10 pc

$$
l_d/l_{10} = (1/d^2)/(1/10^2) = 10^2/d^2 = 10^{-0.4(m_d - m_{10})}
$$

 \bullet Call m_q Call m_d the apparent magnitude m and m_{10} the absolute magnitude M. \bullet d = distance in parsecs.

The Distance Modulus $100/d^2 = 10^{-0.4(m-M)}$ $\log(100/d^2) = -0.4(m-M)$ $2.5(\log(100) - 2 \log(d)) = -(m-M)$ $5 - 5\log(d) = -(m-M)$ $5\log(d) - 5 = m - M$ $5(\log(d) - 1) = m - M$ $5(\log(d) - \log(10)) = m - M$ $5\log(d/10) = m - M$ *or* \angle 102(α)) = $-$ (m $-$ 5102(d) = $-$ (m $-102(10) = m -$

Distance Modulus II

\bullet m - M is the distance modulus

- \bullet 0 = 10 pc
- $\bullet\ 5$ = 100 pc
- Each 5 magnitude increase is a factor of 10 in distance: $10^2 = 100 == 5$ magnitudes! ² = 100 ==> 5 magnitudes!
- If there is interstellar absorption then
	- \bullet 5 log (d/10) = m - M - A
	- \bullet A = absorption in magnitudes.
	- \bullet m = apparent (observed) magnitude
	- \bullet m \equiv (m \circ + A) where m \circ m = (m_o + A) where m_o is what the observed
magnitude would be if there were no absorption.
- \bullet m, M, and A are all wavelength dependent.

Bolometric Magnitude

\bullet Wavelength independent magnitude.

- L = $4R^2\sigma T^4$ and is the total (wavelength integrated) luminosity of a star.
- \bullet M_{bol} = -2.5 log (L) [Absolute Bolometric Magnitude]
- $\bullet~$ The observed bolometric magnitude is:

$$
m_{bol} = -2.5 \log(\int_0^\infty F_\lambda d\lambda)
$$

- \bullet Where F is the observed flux (energy).
- The bolometric correction is defined as
	- \bullet M_{bol} \neq M_{V} \bullet BC (Note that one could use other wavelengths (filters). (filters).

Solar Bolometric Magnitude

● First: $10^{-0.4(m_{bol} - m_{bol}^{\alpha})}$ $L_{\sim 10^{-0.4(m_{bol} - m_{bol})}}$ *L*= *u u*

• What is the bolometric magnitude of the Sun?

- m_{v} = -26.74 BC = -0.07
- \bullet m_v M_v = 5 log (d/10)
- \bullet d = (206265)⁻¹ pc
- Plug in the numbers: M_V = +4.83 and M_{bol} = +4.76
- The solar luminosity = 3.82 (10³³) ergs s⁻¹