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Fig. 4-5 The cross-section factor S(E) for the radiative capture of protons by C!2. The
differing types of data points represent five different, experiments performed at different times
and laboratories by the workers indicated. Detailed references and discussion may be found in
D. F. Hebbard and J. L. Vogl, Nucl. Phys., 21:652 (1960). This curve is more readily extrapo-
lated than the one in Fig. 4-4.

The velocity distribution may be written as the following normalized energy
distribution:
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In the nonresonant-reaction case, the cross-section factor S(E) is slowly varying
over the range of energies that are important in stellar interiors, and so in that
case Eq. (4-37) may be a useful substitution for ¢(E) in the calculation of the
reaction rate per pair of particles:
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The behavior of the integrand is largely Qoeoa:&:mm by the wwcosmziﬂ m“_o\noﬁ
ginee it is a rapidly varying function of energy. Zogo_.o that since exp (—E/kT)
goes rapidly to zero for large F whereas exp ﬁ\@h\mv goes rapidly to zero for
small E, the major contribution to the integral w,ﬁ: come ﬁ.cE. values of Ea
energy that are such that the exponential factor is near its maximur. It will
soon be apparent that most stellar reactions occur in a fairly narrow band of
stellar energies, so narrow that the factor S(¥) will have a sﬁ:.; constant ﬂic.o
over the band of energies. This effective range of ma.nw:%. energies was moWoBﬂT
cally indicated in Fig. 4-5 for the C**(p,y)N** reaction. A good approximation
to Eq. (4-44) will be obtained by replacing S(E) by am.?mm_lz constant) value
at the energy for which the exponential factor is maximal. Let S, represent
that constant value [strictly speaking the average value of S(Z), the average
being taken with respect to the exponential factor]. There results
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which can be evaluated by approximating the integrand by an appropriate

gaussian. . .
Such a procedure is the simplest example of a method of doing a certain class

of integrals, called the method of steepest descent. The method is applicable to
integrals of the form

Jg(z)e?@ dz

where ¢(z) is a slowly varying function of = and the function f(x) has a value
much larger than unity and a single sharp minimum at z,. In those circum-
stances, the integral may be approximated by expanding f(z):
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since the first derivative vanishes at the minimum, and higher terms are dis-
carded as being important only for those relatively large <Eﬁmm.0m T — %o for
which f(z) > f(zo), a fact necessitating that there be little contribution to the
integral. Then a good estimate for the value of the integral becomes
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which has an elementary value.

Problem 4-8: Show that the integral is approximately

.\ glz)e 7 dz =~ /\%M& g(zg) e~/ t=0)

Of course this approximation is useless unless f(z) has the properties prescribed for it.




