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ABSTRACT

We have obtained U, B, and R CCD surface photometry for a sample of 39 elliptical galaxies. For each
galaxy we have determined the surface brightness profile, U — R and B — R color profiles, and the
ellipticity and position angle profiles, all as a function of major axis radius, using a two-dimensional
ellipse fitting program. In addition, we have derived the sin and cos 36 and 46 terms that describe the
high-order deviations of the B and R isophotes from ellipses. While it is very common for ellipticals to
display measurable 36 and 46 terms, the amplitudes of these terms rarely exceed 0.5%. The isophotes of
elliptical galaxies are very well characterized by ellipses. The surface brightness and color profiles are
given to radii at which the error in the profile reaches 0.1 mag from the uncertainty in the brightness of
the night sky. We have carried out a series of simulations of the effects of seeing on luminosity and
ellipticity profiles, to determine the radius beyond which the errors in our data from seeing are less than
0.05 mag and 0.02 in ellipticity. Measurable effects of seeing extend to surprisingly large radii, as much
as 5-10 seeing radii, depending upon the ellipticity of the galaxy and the form of the surface brightness
profile. Ellipticity and position angle profiles are usually the same in all passbands with no indication
that the contours of constant color are more or less flattened than the isophotes, i.e., the isochromes and
isophotes have the same shapes, but the insensitivity of the ellipticity to differences between these
properties makes this a weak argument. The high-order terms, particularly the 30 terms, appear to be
sensitive diagnostics for the existence of dust in ellipticals. We find that all the galaxies in this sample
either become bluer in B — R and U — R with increasing radius or are of constant color. Mean values
for the logarithmic gradients in color are — 0.09 mag (arcsec) ~2 per dex in radius in B — R, and
— 0.20 mag (arcsec) ~2 per dex in radius in U — R. These color changes are consistent with a decrease
in the [Fe/H] of approximately 0.20 per decade in radius. Surprisingly, there is no correlation of color
gradient with luminosity. It is striking, however, that the lowest luminosity galaxies in the sample (i.e.,
those with Mz > —20) do not show any color gradients. They have boxy isophotes, and are also
rotationally flattened. While these properties may be related to the fact that they are companions of
larger ellipsoidal systems, it could provide an important clue to the formation of ellipticals. Low lumi-
nosity ellipticals that are not close companions to giant ellipticals need to be studied.
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L INTRODUCTION

We have undertaken a program of high-precision, multi-
color, surface photometry of 39 elliptical galaxies. Rotation
curves and velocity dispersion profiles have been measured
and published for most of the galaxies. These data provide a
sound basis for exploring relationships between the struc-

) Partly based on observations collected at the European Southern Obser-
vatory, La Silla, Chile.

®Visiting Astronomers at Kitt Peak National Observatory, NOAO, which
is operated by the Association of Universities for Research in Astronomy
under contract to the National Science Foundation.
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ture, stellar population, and kinematics of elliptical galaxies.
Our goal is to investigate the intrinsic properties of elliptical
galaxies and the mechanisms that operated during their for-
mation and evolution.

In this observing program we have emphasized the mea-
surement of color gradients, and report the largest body of
CCD surface photometry that includes observations in the
ultraviolet (U) band. Together with the smaller dataset of
Franx, Illingworth, and Heckman (1989b), the sample of
galaxies with UBR datais now 55 galaxies in size. The uncer-
tainties involved in determining (U — R) gradients are
small compared to the size of the gradient and so the gradi-
ents are now well established. In addition, the ultraviolet
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band is more sensitive to changes in the age and metallicity of
the population.

There is a well established relationship between the inte-
grated luminosity of early type galaxies and their color such
that more luminous galaxies are redder (Sandage and Vis-
vanathan 1978). Similarly, concentric aperture photometry
showed that galaxies are redder at smaller radii (Sandage
1972; Persson, Frogel, and Aaronson 1979). These two phe-
nomena, the color-magnitude relation and the presence of
color gradients, are widely thought to have a common phys-
ical origin, namely the higher metallicity of both the stellar
population in more luminous galaxies and that in the centers
of individual galaxies (e.g., Cohen 1979). We find that, al-
though there is a considerable scatter, typical galaxies ap-
pear to be consistent with color gradients arising from metal-
licity gradients. These data will form the basis for studies of
the stellar population of ellipticals, particularly for those gal-
axies with measured line-strength gradients (e.g., Gorgas
and Efstathiou 1987; Davies and Sadler 1987). For these and
other galaxies the colors allow measurement of the popula-
tion characteristics at radii greater than can be made by the
more direct line-strength measurements.

Models of the formation of galaxies involving the isolated
collapse of a protogalactic gas cloud have been shown to
generate color gradients in the end product (Larson 1975;
Carlberg 1984). Color gradients have thus been used as evi-
dence for the role of dissipational processes in galaxy forma-
tion. While Larson’s models produced galaxies that are now
known to rotate too rapidly and have isochromes that are
probably too flat when compared to real ellipticals, subse-
quent work by Carlberg (1984) has resulted in more realistic
models. Carlberg modeled the isolated collapse of a gas
cloud and included the effect that sites of star formation have
in slowing the collapse. He produced slowly rotating galax-
ies with a smaller flattening of the isochromes. His model
predicts that more luminous galaxies should possess steeper
gradients and we are able to test this.

The observed isophote twisting in ellipticals can be used to
explore their intrinsic shape, particularly when combined
with kinematical data. For example, if low luminosity ellipti-
cals are oblate (Davies et al. 1983), they should not exhibit
isophote twisting Luminosity profiles derived here can be
combined with the observed kinematics for comparison with
model elliptical galaxies to investigate the dependence of
mass-to-light ratio with radius (e.g., Binney, Davies, and
Illingworth 1990).

Recent studies of the structure of elliptical galaxies have
emphasized the deviations of the isophote shapes from per-
fect ellipses (Jedrzejewski 1987; Bender, Dobereiner, and
Mollenhaff 1988). The higher-order terms in the Fourier
expansion of the isophote shapes have a typical amplitude of
0.5%-1% of the light from an isophote. They have been
shown to correlate surprisingly well with both the degree of
rotational support and the radio power (Bender ez al. 1989).
Here we explore these relationships further, and identify a
subclass of ellipticals that do not follow these trends.

By determining the shape of galaxies in different bands we
are sensitive to the presence of patchy dust. In addition, we
demonstrate that the third-order terms in the Fourier expan-
sion of the isophote shape are a sensitive indicator of the
presence of dust. For galaxies free of the contaminating ef-
fects of dust we find that the shape of the stellar light is,
within the errors, identical in U, B, and R. This sample can
be used to search for relationships between the stellar popu-

1092

lation and kinematics of elliptical galaxies. We are able to
investigate the recent suggestion by Vader et al. (1988) that
those galaxies that are flattened by rotation have the steepest
color gradients.

In Davis et al. (1985, hereafter referred to as Paper I) we
described in some detail the observational program, the pho-
tometric and absolute calibration, the surface photometry
analysis, and the results for a few galaxies, namely NGC
1052, NGC 3379, and M87. In this paper we summarize the
basic steps, and then pay particular attention to the effects of
seeing, sky subtraction, and the uncertainty in the calibra-
tion of the data for this very much larger sample. In Secs. IT
and ITI we discuss how the data were obtained, reduced, and
analyzed. In Sec. IV the results of a quantitative numerical
evaluation of the effects of seeing are presented, followed in
Sec. V by the results of this program (with the complete data
being tabulated and plotted in Appendix A). The implica-
tions of these new data are discussed and summarized in
Secs. VI and VIL. In Appendix B we comment on individual
galaxies, noting the problems that arose during the analysis,
while highlighting results of particular interest for each gal-
axy. In a later paper we will analyze the observed color gra-
dients and their relationship to other galaxy parameters in
more detail.

II. OBSERVATIONS

The elliptical galaxy sample was selected primarily from
the tabulation by DEFIS of 58 ellipticals with velocity and
velocity dispersion profiles. In addition, we included those
ellipticals in the kinematic mapping study by Davies and
Birkinshaw (1988) for which surface photometry was not
available, as well as a selection of very luminous ellipticals
(cD’s and other brightest cluster members). These latter
galaxies were taken from Tonry and Davis (1981), Carter et
al. (1985), and Illingworth and Jedrzejewski (1990). The
sample consists of 39 elliptical galaxies ranging in ellipticity
from €=0 to €=0.6, and with absolute luminosities in the
range — 18> M, > — 24.5 (for Hy, = 50km s ' Mpc~!).
In Table I we have summarized some basic data for the gal-
axies of the sample.

The objects were observed between May 1982 and May
1985 with the No. 0.9 m and 2.1 m telescopes at Kitt Peak
National Observatory. The data from the two telescopes are
complementary. The RCA CCD on the 0.9 m telescope of-
fered a large field of view (5’ X 7"), but poorly sampled data,
and was best suited to observing the largest and brightest
galaxies, whereas the 2.1 m with the RCA CCD gave us the
higher spatial resolution and better sampling that was ad-
vantageous for the smaller and fainter galaxies. The pixel
sizes were 0.38” at the 2.1 m and 0.86" at the 0.9 m. The field
of the 2.1 m CCD was 3.2’ (E — W) X2.0'(N — S). Alog of
the observations is presented in Table II.

Exposure times were typically 600 s in R, 1600 s in B, and
2000 s in U. These times were chosen to equalize the signal-
to-noise ratio achieved on the galaxy in R and B; at the point
where the galaxy is 5% of the sky brightness a S/N of ap-
proximately 15 is achieved by averaging 50 pixels. The expo-
sure time in U was sufficient to produce good data only to
radii approximately one half of those in B and R. Conditions
were not always photometric, but this was of little impor-
tance since the data were to be calibrated using aperture
photometry from the literature (see Sec. IIIc). Experience
has shown this to be a more reliable approach.
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TABLE L. Global parameters.
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Galaxy Classification Vgrp  Mpr Environment
RC2 RSA km s~!
¢y ) ®3) @ (6)

NGC 315 SA0 -- 5303 -23.59 --
NGC 720 E5/E3 E5 1728 -21.53 - -
NGC 741 E0/E1 EO0 5347 -23.10 Group with N742
NGC 1052 E4/E2 E3/S0 1392 -20.94 Brightest in N1052 group
NGC 1129 —— - - 5320 -23.68 AWM 7
NGC 1600 E3/E2 E4 4846 -23.14 N1600 group
Abell 496 -- - - 9780 -23.16 --
NGC 2300 SAO0/E1 E3 2256 -21.54 --
NGC 2768 E6/E5 S00,1 1355 -21.16 --
NGC 2778 - - -- 1827 -19.51 Group with N2779
NGC 2832 E2 E3 6780 -22.86 Group with N2831
NGC 3377 E5/E5 E6 667 -19.50 Leo group
NGC 3379 E1/E1 E0 667 -20.20 Leo group
NGC 3605 E4/E3 E5 1033 -18.34 In N3607 group
NGC 3665 SAO0/E2  S0s 2090 -21.36 --
NGC 3801 Sop - - 3171 -21.33 Pair with N3802. Dusty
NGC 4261 E2/E2 E3 2087 -21.78 Pair with N4264
NGC 4278 E1/E1 El 754 -19.87 Pair with N4283
NGC 4374 El1/E1 El 1074 -21.53 - -
NGC 4387 E5 -- 1074 -18.79 - -
NGC 4406 E3/E3 S0,/E3 1074 -21.79 - -
NGC 4472 E2/E4 E1/S0, 1074 -22.34 Pair with N4467
NGC 4478 E2/E1 E2 1074 -19.52 Pair with N4476
NGC 4486 EOp/E1  EO 1074 -22.14 Virgo A
NGC 4551 E3 -- 1074 -18.94 Pair with N4550
NGC 4636 E0/E1 E0/S0, 1074 -21.46 - -
NGC 4649 E2/E1 S0, 1074 -21.89 Pair with N4647
NGC 4697 E6/E4 E6 1071 -21.63 --
NGC 4874 E0 -= 6931 -23.40 Central Coma galaxy
NGC 4889 E4/E4 E4 6931 -23.23 Central Coma galaxy
NGC 5638 E1/E1 El 1596 -20.47 Pair with N5636
NGC 5813 E1/El E1l 1673 -21.23 In N5846 group
NGC 5831 E3/Ep E4 1673 -20.33 - -
NGC 5845 E3 - = 1673 -19.27 In N5846 group
IC 1101 - - - - 23300 -24.40 Abell 2029 ¢D
NGC 6051 E4 - - 9722 -22.95 AWM 4
NGC 6086 E2 - - 9704 -22.95 Abell 2162 ¢D
NGC 6269 - - - - 10700 -23.63 AWM 5
NGC 7626 Elp/E2p El 3693 -22.35 Second brightest in Pegasus I

. Notes to TABLE I
Columns (2) and (3) list the galaxy classifications from the RC2 (De Vaucouleurs et al. 1976) and the RSA (Sandage and
Tammann 1981). Column (4) gives the group velocity from Davies ez al. (1987), corrected for the motion with respect to the
centroid of the local group, using the approach in the RC2. Column (5) lists the integrated blue luminosity M, ,» calculated
using the group velocity and B, from Burstein et al. (1987). For a few galaxies other sources have been used to obtain the
group velocity and the apparent blue magnitude. The remarks on the environment of the galaxies in column (6) are taken
mostly from the RC2.
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TABLE II. Observation log.

Galaxy RA Dec Obs./Tel? Qual. Band  Exp.times Galaxy RA Dec Obs./Tel? Qual. Band Exp.times
(0] (2 (3) 4) 6 (© (M 1) (2 3) 4 5 (6 (7
NGC 315! 00551 3005 Jan84/0.92 2 R 100,600 U 1600
B 1600 May 85/2.1 R 300(3),600
U 2000 B 2000
NGC 720 01506 -1359 Oct 82/0.9 2 R 600 U 2400
B 1600 NGC 4406 12237 1314 Jan 84/0.9 1 R 100,600
U 2000 i B 1600
NGC 741 01538 0523 Jan 84/0.9 2 R 100,600 U 2000
U 2000 NGC 4472 12273 0816 Apr 84/0.9 1 R 100,300
Dec 86/1.5 R 200 B 1600
B 360 U 2000
NGC 1052 02386 -0828 Oct 82/0.9 1 R 100,600 NGC 4478% 12278 1236 Jan 84/0.9 1 R 100,600
B 8004800 B 1600
U 2000 U 2000
NGC 11293 02529 4126 Jan 84/0.9 2 R 100,600 May 85/2.1 R 300(2)
B 1600 B 1000
U 2000 U 2400
NGC 1600 0429.2 -0512 Oct 82/0.9 2 R 600 NGC 4486 12283 1240 Mar 84/0.9 1 R 300
B 1600 B 600(2)
U 2000 U 2000
Dec 86/1.5 R 180 NGC 4551% 1233.1 1232 Jan 84/0.9 1 R 600
B 300 U 2000
Ab. 4963 04313 -1322 jan 84/0.9 3 R 100,1200 Apr 84/0.9 R 100,600
B 2400 B 1600
U 3600 May 85/2.1 R 300(2)
NGC 2300° 07160 8549 apr84/0.9 2 R 100(2),600 B 1000
B 1600 U 2400
U 2000 NGC 4636 12403 0258 Apr 84/0.9 1 R 100,600
NGC 2768 0907.7 6015 Apr 84/0.9 1 R 100,600 B 1600
B 1600 U 2000
U 2000 NGC 4649 12412 1149 Apr 84/0.9 1 R 100,600
NGC 2778 09092 3513 Jan 84/0.9 1 R 6004600 B 1600
B 1600+1600 U 2000
U 2000+2000 NGC 4697 12471 -0540 Jan 84/0.9 1 R 100(2),300
May 85/2.1 R 3004300 U 2000(2)
B 1000 Apr 84/0.9 R 100,300
U 2400 B 600,1600
NGC 2832 09168 3358 Jan84/0.9 1 R 600 NGC 4874 12572 2814 Jan 84/0.9 3 R 100,600
B 1600 B 1600
U 2000 U 2000
NGC 3377 10451 1415 May 85/2.1 1 R 50,100 NGC 4889 12577 2815 Jan 84/0.9 2 R 100,600
B 150 B 1600
U 1800 U 2000
NGC 3379 10452 1251 Jan 84/0.9 1 R 100 NGC 5638 14272 0327 May 85/2.1 1 R 300,1000(2)
U 2000 B 2000
Apr 84/0.9 R 100(2),300(2 ) U 2400
B 1600 NGC 58133 14586 0153 Jan84/0.9 1 R 600
NGC 3605 1114.1 1817 Apr 84/0.9 1 R 100(2),600(2 ) U 2000
B 1600(2) Apr 84/0.9 R 100(2),600
U 2000 : B 1600(2)
May 85/2.1 R 300(2) ; May 85/2.1 R 300(2)
B 1000 B 1000
U 2400 U 2400
NGC 3665 11220 3902 Jan 84/0.9 1 R 100,600 NGC 5831 15016 0124 Jan84/0.9 1 R 100,600
B 1600 U 2000
U 2000 Apr 84/0.9 R 100,600
NGC 3801 11377 1800 Jan 84/0.9 1 R 100,600 B 1600
B 1600 May 85/2.1 R 300(2)
U 2000 B 800
NGC 4261 12168 0606 Jan 84/0.9 1 R 100,600 U 2400
B 1600 NGC 5845° 15035 0148 Jan 84/0.9 1 R 100,600
U 2000 U 2000
NGC 4278 12176 2933 Jan 84/0.9 1 R 100,600 Apr 84/0.9 R 100,600
B 1600 B 1600
U 2000 May 85/2.1 R 150(2),300
NGC 4374 12225 1310 Jan 84/0.9 1 R 100,600 B 500
B 1600 U 2400
U 2000 IC 1101 15084 0556 Apr 84/0.9 1 R 600,1200
May 85/2.1 R 100(2) B 1600
B 300 U 2000
NGC 4387 1223.2 1305 Jan 84/0.9 1 R 100,600 May 85/2.1 R 600,1000(2)
- U 2000 B 2000(2)
Apr 84/0.9 R 100,600 U 2400(2)
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TABLE II. (continued)
Galaxy RA Dec Obs./Tel> Qual. Band  Exp.times Galaxy RA Dec Obs./Tel.?2 Qual. Band Exp.times
(1) 2 3 (4) ®  (® (M (1 (2 (3) (4) (6 () 7
NGC 6051 16 028 2404 May 85/2.1 3 R 300(3) NGC 6269 16 56.0 27 56 Apr 84/0.9 3 R 100,600
B 1000 B 1600
U 2400(2) U 2000
NGC 6086 16 10.5 2938 Apr 84/0.9 3 R 100,600 May 85/2.1 R 300,600
B 1600 B 2000
U 2000 U 2100
May 85/2.1 R 300 NGC 7626 23 18.2 0756 Oct 82/0.9 1 R 600
B 1000 B 600
U 2100 U 2000

Notes to TABLE II
The R.A. and Dec. in columns (2) and (3) are 1950 coordinates. The Quality parameter in column (5) is discussed in the text. The exposure times are in se-

conds.

'For NGC 315, the scattered light from a very bright star close to the frame was modeled and subtracted.
Telescopes: 2.1 — 2.1 m KPNO; 0.9 — #1 0.9 m KPNO; 1.5 — 1.5 m Danish telescope at ESO.
3A N-S ramp in the background across the detector that was caused by leakage from a red light close to the detector was modeled and subtracted from the 0.9

m R-band frames.

4A sloping background due to contamination from a large nearby galaxy, NGC 3607, was subtracted.

The characteristics of the RCA CCDs used on the No. 1
0.9 m telescope are given in Paper I. That used on the 2.2 m
was similar, except for a high radiation event rate. The
events could easily be masked and caused no problems.
None of the CCDs showed any significant fringing with the
filters used. The characteristics of the U, B, and R filters used
on both telescopes are summarized in Table III of Paper I.
The KPNO Mould U, B, and R filter set was used for these
observations, and the results transformed onto the Cousins
system (see Paper I, and Sec. III).

III. REDUCTION AND ANALYSIS

The data were reduced as described in Paper I. We deter-
mined the median bias level from the 32 column overscan
region of each row of each frame and subtracted it. We then
trimmed the frames to 320X 512, subtracted the bias frame,
and divided each galaxy and star frame by the flat-field
frame taken through the appropriate filter. We used high
S/N dome flat-field frames taken at the beginning and end of
each night. Sky frames were used to verify, and correct if
necessary, the uniformity of the flat fields. No fringing
(>0.5%) from night sky lines was observed. We subse-
quently noticed that some R frames from the No.1 0.9 m
telescope, contained small ( <1.5% across the detector)
background gradients from north to south. These frames are
identified in Table II. The gradients were removed by sub-
tracting a linear fit to the background. The gradients were
apparently due to an inadequately masked red light in the
dome.

a) Isophote Fitting and Profiles

Luminosity profiles were determined using a version of
GASP (Cawson 1983). The GASP system has been de-
scribed in detail in Paper I. It is used interactively in con-
junction with a color-image display. A device mask, identify-
ing all the “bad” pixels on a given CCD, was generated and
applied to all frames, so that none of the “hot” pixels or
columns with traps, etc., were included in the analysis. For
each galaxy frame, all the interfering images that were super-
imposed on the galaxy to be measured, such as stars, small
companion galaxies, and cosmic rays, were automatically

identified and masked out. In some cases this automatic pro-
cedure was augmented by manual identification of objects.
Elliptical isophotes were then fitted to the galaxy using a
revised version of the program PROF. We are grateful to R.
Jedrezejewski for giving us a much faster version of this pro-
ram.

& The program takes the preliminary (x,y) center, position
angle, and ellipticity which had been estimated in the image-
finding step, and samples the pixel data around an ellipse of
given major-axis length. If the isophotes of the galaxy are
elliptical, and the estimated parameters of the sampling el-
lipse are close to the true values, then the variation in pixel
values 7(0) around the sampling ellipse can be expressed as a
Fourier series with small first- and second-order terms. The
intensity along the ellipse is approximated by

2 2
1(0) =IO(2 C, cos(i0) + Z S, sin(ie)),
i=1 i=1

and this equation is fitted to give the Fourier coefficients. An
iterative least-squares-fitting procedure adjusts the ellipse
parameters until the sum of the squared residuals between
the data and the ellipse is smaller than a set threshold, or a set
number of iterations has been reached. The process was re-
peated at major-axis radii each of which was a factor
1.1 X larger than the previous step, until less than 60% of an
isophote was included in the frame, or the galaxy surface
brightness fell to 1% of the sky.

The final step at each radius is the determination of any
deviations from elliptical isophotes. The third- and fourth-
order Fourier coefficients were determined from fitting

4 4
16) = 10( 3 C cos(if) + 3 S, sin(iG)),
i=1 i=1

with the low-order coefficients held constant. That is, in this
final step there was no iteration; C,,C, and S, S, were held
constant. We simply solve for the high-order terms, and so
the coefficients do not strictly describe an isophote; the error
introduced is inconsequential, since the deviations are very
small, being typically 0.5%.

An ellipse is specified completely by the first- and second-
order Fourier terms, so the third- and fourth-order coeffi-
cients are zero for perfectly elliptical isophotes. However,
nonzero values for the third- and fourth-order components
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TABLE III. Seeing, background, and cutoff radii.

Galaxy Te € Band Seeing Sky | Profile Ext. + K Inner Outer
" at 10” " Correction Cutoff Cutoff
(1) (2) 3) 4) (5) (6) o - ® 9 (10
NGC 315 68 0.26 R 23 20.59 R 0.08 32 122.2
B 30 2212| B-R 0.11 6.3 57.0
U 3.5 2172 | U-R 0.12 7.7 57.0
NGC 720 52 0.40 R 21 20.34 R 0.01 2.6 163.0
B 2.1 2188 | B-R 0.02 2.6 111.1
U 2.4 2084 | U-R 0.01 4.0 69.0
NGC 741 57.5 0.17 R 14 20.10 R 0.02 2.1 83.4
B 1.4 21671 B-R 0.07 2.1 51.8
U 2.8 2114 | U-R 0.05 7.0 322
NGC 1052 36.5 0.28 R 24 20.42 R 0.00 3.4 122.2
: B 24 2203| B-R 0.02 3.4 834
U 24 2131 | U-R 0.02 34 62.7
NGC 1129 >50 0.20 R 23 2043 R 0.21 3.4 163.0
B 24 21.88 | B-R 0.23 3.6 91.8
U 2.7 2142 | U-R 0.27 4.5 57.0
NGC 1600 56 0.35 R 12 2033 R 0.08 1.6 123.0
B 12 2190 B-R 0.11 1.6 62.7
U 2.8 21251 U-R 0.11 5.4 354
Abell 496 93* 0.21 R 2.1 20.36 R 0.08 3.1 57.0
B 2.3 21.78 | B-R 0.17 34 35.4
U 2.5 2112 | U-R 0.15 4.7 26.6
NGC 2300 55* 0.20 R 3.5  20.08 R 0.09 54 1344
B 3.6 21.74 | B-R 0.10 5.6 69.0
U 4.6 2099 | U-R 0.12 7.5 428
NGC 2768 176.5 0.40 R 2.0 20.46 R 0.05 2.5 230.1
B 20 2212| B-R 0.05 2.5 193.8
U 20 2069 | U-R 0.05 2.5 105.0
NGC 2778 185 021 R 1.7 20.78 R 0.04 2.7 48.6
B 18 2251 | B-R 0.05 2.9 36.5
U 1.9 2197 | U-R 0.05 3.0 30.2
NGC 2832 46.5" 0.28 R 2.1 20.69 R 0.05 2.9 1344
B 2.1 2220 | B-R 0.12 2.9 75.8
U 2.2 218 | U-R 0.11 3.1 51.8
NGC 3377 46 0.46 R 1.5 20.25 R 0.00 1.8 96.0
B 1.6 2166 | B-R 0.01 1.9 86.9
U 1.9 2172 | U-R 0.01 . 4.9 86.9
NGC 3379 375 0.10 R 2.0 2041 R 0.00 : 3.3 170.0
B 34 2217 B-R 0.01 6.6 127.8
U 2.1 2164 | U-R 0.01 35 105.6
NGC 3605 225 040 R 23 20.53 R 0.00 2.9 39.7
B 20 2210| B-R 0.01 2.9 32.8
U 23 2149 | U-R 0.01 2.9 27.1
NGC 3665 65.5* 0.38 R 22 20.87 R 0.01 2.8 178.9
B 2.1 2256 | B-R 0.02 2.8 111.1
U 22 2192| U-R 0.02 2.8 834
NGC 3801 44.5* 0.30 R 2.1 20.81 R 0.01 2.9 86.9
B 26 2241 | B-R 0.04 4.9 65.2
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TABLE III. (continued)

Galaxy Te € Band Seeing Sky | Profile Ext. + K Inner  Outer
" at 10” " Correction Cutoff Cutoff
m 2 6 @ 6 () ()] ®) (9  (10)
U 3.2 2223 | U-R 0.03 7.0 59.3
NGC 4261 425 0.24 R 2.5 20.68 R 0.01 3.7 125.9
B 2.6 2228 | B-R 0.02 38 78.2
U 2.7 2210 | U-R 0.02 4.0 64.7
NGC 4278 35 0.14 R 2.0 20.71 R 0.00 32 160.0
B 1.7 2221 | B-R 0.01 33 108.1
U 2.7 2187 | U-R 0.01 5.1 89.4
NGC 4374 57 0.20 R 1.6 20.65 R 0.00 2 .4 164.0
. B 1.8 2248 | B-R 0.01 33 163.3
: U 4.0 2215| U-R 0.01 6.3 112.0
NGC 4387 20 0.40 R 1.8 20.76 R 0.00 2.3 60.0
B 2.2 2210 | B-R 0.01 2.8 44.0
U 1.9 2157 | U-R 0.01 2.4 33.0
NGC 4406 1045 0.18 R 2.0 20.65 R 0.00 3.0 175.0
B 2.1 2236 | B-R 0.01 3.2 158.8
U 2.7 21891 U-R 0.01 6.4 108.5
NGC 4472 114 0.20 R 2.0 20.40 R 0.01 3.0 172.0
B 2.3 2205 | B-R 0.01 39 156.0
U 2.9 2143 | U-R 0.01 7.0 155.3
NGC 4478 155 0.20 R 1.9 20.95 R 0.00 3.1 69.3
B 2.0 2247 | B-R 0.02 3.3 57.7
U 2.3 2208 U-R 0.02 3.9 43.5
NGC 4486 110 0.03 R 2.5 20.19 R 0.00 43 163.0
B 2.5 2206 | B-R 0.01 4.3 148.0
U 2.5 2140 | U-R 0.01 4.3 147.8
NGC 4551 21 0.26 R 1.8 20.70 R 0.00 2.7 57.8
B 1.8 2230 | B-R 0.01 2.7 43.5
U 2.2 2196 | U-R 0.01 33 39.2
NGC 4636 117 0.05 R 2.1 20.43 R 0.00 3.5 166.0
B 24 2181 | B-R 0.01 4.0 165.3
U 2.9 2104 | U-R 0.01 6.7 102.6
NGC 4649 82 0.15 R 2.0 20.29 R 0.00 3.1 185.0
B 24 2176 | B-R 0.01 4.8 167.8
U 2.9 2092 | U-R 0.01 7.0 104.2
NGC 4697 945 0.39 R 1.7 20.37 R 0.00 2.2 188.0
B 2.2 2189 | B-R 0.02 5.6 153.1
U 2.2 2151 | U-R 0.02 5.6 126.5
NGC 4874 66.5 0.07 R 2.1 20.67 R 0.02 34 91.8
B 2.1 2252 | B-R 0.10 3.4 51.8
U 2.1 2212 | U-R 0.07 34 35.4
NGC 4889 39 0.35 R 2.7 20.54 R 0.02 3.6 122.2
B 2.5 2225 | B-R 0.10 3.6 75.8
U 2.7 2183 | U-R 0.07 3.6 51.8
NGC 5638 295 0.10 R 1.7 21.07 R 0.00 2.8 80.0
B 2.0 2159 | B-R 0.02 34 54.0
U 2.2 2120 U-R 0.02 4.0 49.1
NGC 5813 56 0.23 R 1.9 20.85 R 0.02 2.8 173.0
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TABLE III. (continued)

Galaxy Te € Band Seeing Sky | Profile Ext. + K Inner Outer
" at 10" " Correction Cutoff Cutoff

1) (2) (3) 4 (5) (6) (7 (®) 9 (10

B 1.9 2228 | B-R 0.04 2.8 122.2

U 2.0 2179 | U-R 0.05 2.9 76.0

NGC 5831 28 0.28 R 1.7 20.71 R 0.02 2.4 91.8
B 1.8 2209 | B-R 0.04 2.6 58.5

U 2.0 2184 | U-R 0.05 2.9 48.4

NGC 5845 4.55 0.35 R 1.6 20.76 R 0.03 24 36.1
B 1.6 2233 | B-R 0.04 2.4 27.1

U 2.3 2194 | U-R 0.04 3.7 20.4

IC 1101 1145 0.44 R 2.1 21.06 R 0.08 2.5 76.0
B 2.2 2261 | B-R 0.30 2.7 30.1

U 1.8 2209 U-R 0.23 4.1 27.4

NGC 6051 25.5 0.29 R 2.0 20.95 R 0.06 2.9 60.0
B 2.1 2256 | B-R 0.15 3.0 55.0

U 2.3 2191 | U-R 0.13 33 33.5

NGC 6086 25 0.30 R 1.6 21.19 R 0.06 2.2 92.0
B 1.5 2255 | B-R 0.15 2.2 47.1

U 1.5 2198 | U-R 0.13 2.2 26.6

NGC 6269 475* 025 R 2.2 20.77 R 0.08 32 85.1
B 2.6 2218 | B-R 0.18 44 48.0

. U 1.5 2149 | U-R 0.17 6.2 24.6
NGC 7626 41.5 0.12 R 2.0 20.23 R 0.04 32 91.8
B 2.1 2199 | B-R 0.04 34 62.7

U 2.1 2119 | U-R 0.03 3.4 38.9

Notes to TABLE III

Column (2) gives the effective radius from Burstein et al. (1987), and where indicated by *, from the
RC2. The Burstein et al. value has been transformed to major axis effective radii, using ellipticities in
column (3) that were measured from the data. Column (5) lists the FWHM of the seeing in arcseconds,
and column (6) the surface brightness of the sky in mag arcsec 2. Column (8) gives the correction for
galactic extinction and redshift together, applied to the R, B — R and U — R profiles. Columns (9) and
(10) list the inner and outer cutoff radius used in the tabulation and presentation of the data. These radii
were derived from the measured seeing and sky background level, as discussed in the text. For a few
galaxies the data were of poor quality and/or the galaxy was limited by the frame size to higher surface
brightnesses than normally used for the cutoff. For these we truncated the profiles at the outer radii

shown below:

Color cutoff (% of sky) Outer cutofl (% of sky)

Galaxy

NGC 1600 15
NGC 4261 20
NGC 4406 20
NGC 4874 20

are not at all exceptional for ellipticals, even though the am-
plitude of such terms is quite small. Typically they have am-
plitudes of 0.5%. Four examples of model galaxy isophotes
with 36 and 46 terms of amplitude 0.05 (10X typical) are
shown in Fig. 1 for an E4 elliptical. The reason for the char-
acterization of the 40 terms as “boxy” (negative) or “disk-
like” (positive) are clear from the figure.

The accurate determination of the 36 and 40 terms re-
quires higher S/N data than is needed for luminosity, ellipti-
city, and position angle profiles. For some galaxies, especial-
ly the cD’s, the amplitudes of these terms are rather
uncertain, as can be inferred from the scatter in the values at
neighboring radii. This was particularly true of the deter-
mination of these terms from the U-band data; as a result, the
360 and 46 terms are not shown for the U data.

A subjective quality parameter was assigned to the data of
each galaxy. Quality parameter 1 was assigned to those sur-
face brightness measurements with low internal scatter that
reproduced well in multiple observations. A few of the

fainter galaxies (of low apparent magnitude) could be mea-
sured over only a limited radius range due to the poor seeing
and/or poor signal-to-noise; these galaxies were assigned
quality parameter 3. Intermediate cases were assigned quali-
ty 2. These quality parameters are given in Table II. A more
direct assessment of the quality of the data can be obtained
by inspection of the results in Fig. 15 (Appendix A).

b) Sky Subtraction

Most galaxies were sufficiently small that we could mea-
sure the sky directly from the galaxy frame. We applied the
“boxes” method from Paper I, wherein the pixels in small
arrays near the corners were averaged to give a sky estimate.
The global average of the arrays was taken to be the sky for
that frame. For a number of larger galaxies this method did
not work very well, since the galaxy itself was still detectable
at the edges of the frame. These galaxies were NGC 2768,
3377, 3379, 4374, 4406, 4472, 4486, 4636, 4649, and 4697.
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E4 E4
a) b)
C3 = 0.05 S4 = 0.05
E4 E4
c) d)
C4 = 0.05 C4 = -0.05

F1G. 1. Isophotes of model galaxies with nonzero high-order Fourier
terms. Several E4 model ellipticals are shown with 30 and 46 terms with
an amplitude 0.05 (10X typical) added to the model. (a) has threefold
symmetry from the addition of a positive cos 38 term; (b)—(d) show
fourfold symmetry from added positive sin 46 [in (b)], added positive
cos 40 [in (c) ], and added negative cos 46 [in (d)]. The shape in (c) is
characteristic of a major- or minor-axis disk, while that in (d) is charac-
teristic of “boxy” isophotes.

Since the 0.9 m field was 7.5' X 4.5', and some large galaxies
were offset from the center of the frame, the galaxy contribu-
tion at the edges was only a few percent of sky. For these
large galaxies we used the “boxes” method to get an initial
value of sky. This value was then corrected slightly so that
the luminosity profile in the outer parts fell off with the same
slope as that in the intermediate regions.

To assess the accuracy of our sky estimates we compared
the profiles for the twelve galaxies with data from both the
0.9 and the 2.1 m telescopes. The “boxes” method, with its
correction from the luminosity profile when needed, was ap-
plied independently to both 0.9 and 2.1 m frames, after
which the sky-subtracted profiles were compared. The radi-
us at which sky could be determined on the 2.1 m was about
half as large as on the 0.9 m. We found that no adjustment of
the 2.1 m sky level was necessary for six of the galaxies; the
0.9 and 2.1 m profiles agreed.

Of the remainder, four required a decrease in 2.1 m sky
estimate of about 1%. NGC 4374 and NGC 5813 are so large
that the galaxy was contributing more than 5% of the level of
sky at the edge of the 2.1 m frame. Even for these large
galaxies the contribution of the galaxy at the edge of the 0.9
m frame was only of the order of 1% of sky. After correction
the sky values should be determined to this level or better. To
summarize, we expect, conservatively, that for our best data
(those galaxies with quality parameter 1) the uncertainty in
sky to be approximately 1%. For the very large galaxies
(listed above) the error could be as large as 2%.

An additional diagnostic for sky (and flat field) problems
is the position of the center of the galaxy. Position angle
shifts found were very small or nonexistent, being < 0.5 pixel

on the 0.9 m telescope, and even less on the 2.1 m, suggesting
that both sky problems and other effects are minimal.

The profiles determined from the 0.9 and 2.1 m telescope
data are compared in Fig. 2 (after adjustment of the 2.1 m
sky values). We have applied an inner radial cutoff, to ac-
count for uncertainty introduced by the effects of seeing (see
Sec. IV). The cutoff was based on the best seeing, so the
effects of the poorer seeing frames (usually from the 0.9 m
telescope) are still visible. For each galaxy the best 2.1 m
frame was subtracted from the best 0.9 m frame, after cor-
recting the 2.1 m sky background. The dominant source of
noise in these comparisons is the 0.9 m data. For some galax-
ies, for which the 0.9 m data is poor (e.g., NGC 6086 and
NGC 6269) the comparisons show large scatter. Differences
in the Uband have the largest amplitude, because the signal
in Uis the smallest on both telescopes.

The repeatability of the data between the two telescopes
suggests that it is not subject to systematic errors such as
internal scattered light and reflections within the instrument
(from filters, detector, detector support, etc.). The different
scales at the 0.9 and 2.1 m would lead to quite different con-
tributions at a given radius.

We also checked whether our profiles reproduced from
frame to frame. Frames with different exposure times were
processed independently, both for the luminosity profile and
the sky level. Differences in the profiles were less than 0.02
mag within the outer cutoff, except in the center where see-
ing effects dominated.

We have truncated the luminosity profiles at a surface
brightness of 10% of the sky background. This level was
chosen since our typical uncertainty of 1% in the sky level
results in a 10% error (i.e., + 0.1 mag) at the cutoff radius.
Similarly, we truncated the color profiles at the smaller of
the radii from the two bands at which the surface brightness
reached 10% of the level of sky. If the percentage of sky at
the same radius was comparable in both bands, we truncated
the color profiles at the radius at which the total error in the
color profile was 10%. Table III gives these outer cutoffs for
the R luminosity profile and the color profiles, together with
the inner cutoffs derived as discussed in Sec. IV.

While uncertainties in the sky remain as a potential source
of systematic error, we feel that we have done as well as can
reasonably be done with the small CCDs available to date.
The data are clearly valuable, even with this concern about
the sky. Future studies with large detectors will show
whether this confidence is misplaced or not.

Finally, the seeing was measured on each frame from
three or four stars, when available. The GASP PROF and CUTS
routines (see Paper I) were also used to derive the seeing
profiles. The FWHM for the seeing are given in Table III.
Note that the 2.1 m data had better seeing than the 0.9 m
data; the U seeing is generally worse than that for the B and
R data, especially on the 0.9 m.

¢) Rebinning and Photometric Calibration

After sky subtraction the data were rebinned in radius and
weighted averages of the profiles in each band were genera-
ted. Weight factors were directly proportional to integration
times; the better seeing and sampling of the 2.1 m telescope
meant that in general these data along were used for the
galaxy centers. The data were rebinned in radius such as to
make the data points independent. Each data point was
weighted by the area of its associated annulus. When inter-
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FIG. 2. Comparison of the profiles from the 0.9 and the 2.1 m data, after correction of the 2.1 m sky levels. The profiles have been limited to the ra-

dial range set by the 2.1 m seeing at small radii (Sec. V) and the sky uncertainty at large radii (Sec. I11b). Some secing effects from the 0.9 m are

apparent. The U data are crosses, the B data are open circles, and the R data are open triangles.
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polation was necessary a fifth-order polynomial was used
with no loss of information since the profiles were well sam-
pled in radius.

Systematic differences in scale between the images in the
three bands could have caused systematic errors in the mea-
sured color gradients. In Paper I we showed that scale differ-
ences at the No.1 0.9 m were insignificant. The scale differ-
ences were determined again by measuring the accurate
positions of stars on glass copies of the Palomar Sky Survey
for =20 galaxies using the Sony measuring machine at the
Sterrewacht, Leiden. No significant differences from unity
were found at either telescope (typical uncertainties were

+ 0.002).

We found small, but systematic offsets in position angle
for the same galaxy observed during different runs. These
differences were typically 1-2°, but were sometimes 4-5°. We
attribute these differences to small changes from run to run
in the orientation of the dewar on the telescope. By measur-
ing stars on the CCD frames and on the Palomar Sky Survey
plates all position angle measurements have been corrected
and are given from north through east.

To provide an absolute calibration for the profiles (i.e., to
transform CCD counts to magnitudes on the Cousins UBR
system), we used published aperture photometry from Bur-
stein ez al. (1987) for 30 galaxies and the catalogs of Longo
and de Vaucouleurs (1983, 1985) for the remainder. The
data used from the latter catalogs came primarily from San-
dage and Visvanathan (1978) and Persson, Frogel, and Aar-
onson (1979). The transformations used are given in Paper
I. For IC 1101 no published aperture photometry was avail-
able in any band, nor for NGC 2778 and NGC 5845 in U,
and so we used the calibration from other galaxies that were
observed on the same night. For galaxies for which the Bur-
stein et al. tabulated colors are given as V' — R, we derived
V — R values by using the transformation

V—Rc =0.73(V—R,) —0.03,

from Bessel (1979). For galaxies for which ¥ — R was not
available, we used the mean (¥ — R;) — (B — V) relation
for ellipticals from Burstein et al. and the transformation
above to give

V—R.=0.613(B— V) +0.021.

From the scatter in the aperture measures for individual gal-
axies we estimate that this transformation did not introduce
errors larger than 0.03 mag. From the internal scatter in the
aperture measurements, we estimate that an accuracy of the
zero point of 4+ 0.1 magin U, B, and R is realistic. Since our
main goal is to measure luminosity and color profiles, an
accurate zero point is desirable, but not essential.

Galactic extinction and K corrections were dealt with in

the same way as described in Paper I. Reddening corrections
(from Persson et al. 1979) are of the form A4,
=0.1(cosec|b | — 1), b<50°, A4, =305E;_,,Ey,_,
=171E;_,,and E,_x =0.80E;_,. The X corrections
(from Whitford 1971) were determined from AV = 2z,
A(U—-V)=2z, A(B—V)=3z, and A(V—R) = —z,
where z is the redshift of the galaxy. These corrections have
been applied to both the plotted and tabulated data.

IV. SEEING SIMULATIONS

Previous studies of the effects of seeing on galaxy profiles
(Schweizer 1979, 1981; Djorgovski 1983; Lauer 1985) have
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emphasized the way in which seeing modifies core param-
eters. The goal of these studies has been to derive the true
parameter values by generating corrections to the seeing-
convolved parameters. The seeing in our data was generally
not good enough to make such an approach fruitful. Here we
investigate the effects of seeing on the profiles to establish the
radius beyond which they are accurate (until sky errors be-
come a major factor). We simulated galaxies with a de Vau-
couleurs #'/* law luminosity profile and a range of constant
ellipticities to determine the radii beyond which the error
due to seeing is Am < 0.05 mag for the luminosity and color
profiles, and beyond which the ellipticity error Ae <0.02.
Elliptical galaxies are rarely as centrally concentrated as an
r*1aw, and so this approach is likely to generate a conserva-
tive (upper limit) radius beyond which the profile should be
accurate to the above tolerances. The simulated images were
convolved with Gaussian seeing profiles covering the range
of seeing-to-galaxy length-scale ratios present in the data. A
seeing profile with exponential wings (as in Schweizer 1979)
was also tried and produced results which were rather simi-
lar; the effects of different point-spread functions (PSFs)
have been explored by the authors quoted above.

PROF was run on these simulation frames to measure lumi-
nosity and ellipticity profiles. These were then compared
with the original profiles to assess the effect of seeing on the
luminosity profile. Comparisons between profiles measured
from galaxy models convolved with different seeing values
were made to assess the effect of seeing on the color profiles.
We assumed no intrinsic color gradient for the purposes of
this simulation. This assumption is reasonable since the
magnitude of the color gradients, even over a factor 10 in
radius, is small. Seeing redistributes the light in the center of
the galaxy from small radii to larger radii, reducing the cen-
tral surface brightness and correspondingly increasing the
surface brightness at intermediate radii, beyond which the
profiles become identical. We then measured the major axis
radius beyond which the difference between the original and
the seeing-convolved profiles was smaller than the above
limits (i.e., Am <0.05 mag and A€ <0.02).

The results can be seen in Figs. 3(a)-3(c). The radii at
which the effects of seeing become less than the adopted
limits of Ae = 0.02, Am; = 0.05 and Am = 0.05 are plot-
ted against the seeing. Both the radii and the seeing are nor-
malized by the galaxies effective radius 7,. D, is the seeing
FWHM in Fig. 3(a) and 3(b), and the smaller of the two
seeing FWHM in Fig. 3(c), while D, is the larger of the
seeing FWHM. D, is the effective diameter (twice the effec-
tive radius along the major axis). The radius cutoffs are
shown for a range of ellipticities. These figures demonstrate
that:

(1) The major-axis luminosity profiles are affected more
by seeing when the ellipticity is low than when the ellipticity
is high. This is because there is less light off the major axis in
an elongated galaxy than in circular one, to “contaminate”
the light on the major axis.

(2) Ellipticity profiles are affected more when the ellipti-
city is high. The radial extent over which seeing affects the
ellipticity is much larger than we had expected.

(3) The error in the color profile caused by seeing arises
predominantly from the frame with the poorer seeing; the
error is small if the seeing in both frames is the same, but
initially varies rapidly as Dg/D; decreases from unity.

If we take a King model instead of an '/ law, the effect of
seeing depends on the core radius of the King model. For
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FI1G. 3. Seeing cutoffs from simulations where model galaxies were convolved with Gaussian seeing point-spread functions (PSFs) for a range of
ellipticities €. The cutoff radii are normalized to 7, and are determined to be those beyond which the error from seeing effects on a #'/* law profile are
(a) <0.05 mag in the surface brightness profile, (b) <0.02 in the ellipticity, and (c) < 0.05 mag in the color profile. Ds is the seeing PSF FWHM in
(a) and (b), and the smaller of the two seeing FWHM in (c), while D, is the FWHM of the larger seeing PSF. D, is the effective diameter (twice the

effective radius #, along the major axis).

core radii much smaller than the seeing radius, the results
are similar to that for an r'/* law profile. As expected, for
core radii much larger than the seeing any effect is small.
When the core and seeing radii are comparable the King
model fit is perturbed less than the »'/* law fit, since the
former is less centrally concentrated and less light is avail-
able to be redistributed.

We have assumed that there is no intrinsic color gradient.
Then, if the seeing in both bands is almost equal, the error
resulting from the seeing in the color profile is smaller than
that in either luminosity profile, because both errors almost
cancel each other. For this reason, we have determined inde-
pendently the radii outside which the error in the color pro-
file is smaller than 0.05 mag. The color profile for a galaxy
with no intrinsic color gradient derived from frames taken
under different seeing conditions will not be constant. Seeing
redistributes the light in the inner parts to larger radii. The
larger the seeing, the more light is redistributed from the

center. So if one subtracts the profile from the frame with the
best seeing from the worst seeing case, the “color profile” is
negative at the center, rises through zero to a maximum, and
asymptotically returns to zero. If the maximum is larger
than 0.05, there are two regions where the absolute differ-
ence is smaller than 0.05 mag: at large radii, and near the
point at small radii where the profiles cross one another be-
fore separating at still smaller radii. If the maximum positive
difference is greater than our chosen tolerance, namely 0.05
mag, there will be two points where the locus of the differ-
ence crosses the value + 0.05 and one, at a small radius,
where the locus crosses the value — 0.05 mag.

In Fig. 3(c), we show the radius beyond which the lumi-
nosity profile of the frame with the poorer seeing is less than
0.05 mag brighter than the frame with the better seeing. We
have used only the most conservative prescription in gener-
ating Fig. 3(c), so that once the maximum positive differ-
ence falls below 0.05 mag, no symbol is plotted. Note that for
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round galaxies the plotted radius is larger than for flattened
ones. For galaxies with nonzero color gradients, the error in
the color profile will not converge to zero if both seeings are
equal.

We applied the results from these simulations to our gal-
axies, and determined the radius beyond which the profiles
were essentially unaffected by seeing. The effective diame-
ters needed for this were taken from Burstein et al. (1987),
and converted to major-axis effective diameters. The central
ellipticity was taken to be that at ~ 10", beyond the worst
effects of the seeing. In Table IIT we present this ellipticity
and the effective radii. With these values and our seeing esti-
mates we determined the inner cutoff radii for the surface
brightness, ellipticity and the color profiles by interpolating
across the values from the simulations. To avoid large errors
caused by interpolating near Dg/D, = 0, effective diameters
larger than 100” were truncated to 100”. The radial cutoffs
determined from the simulations have been applied to the
final tabulated and plotted data in Table IX and Fig. 15 in
Appendix A.

The simulations show that the ellipticity is significantly
affected by seeing out to quite large radii. As a result we have
tabulated values for the ellipticity from half the inner cutoff
radius determined from the simulations. For some highly
flattened galaxies the ellipticity appears to decrease in the
center. For example, in NGC 3377 and NGC 4697 the ellip-
ticity decreases monotonically at radii less than 10 arcsec.
The simulations show that this entire effect can be attributed
to the seeing and that the data are consistent with the ellipti-
city remaining constant at the value observed at radii greater
than 10 arcsec (see Fig. 4 where the results for NGC 3377
and NGC 4697 are shown). We caution the reader that the
ellipticities are accurate to 0.02 only beyond radii that are
twice as large as those for the first € value in Table VII. The
error in the position angle increases « 1/€ as the ellipticity
tends to zero, and so can become very large (an example of a
galaxy subject to this effect would be NGC 4486).
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FiG. 4. Ellipticity profiles for NGC 3377 and NGC 4697 in R. No radius
cutoffs have been applied. Model profiles are overlaid. They are derived
from a galaxy with a de Vaucouleurs luminosity profile and a fixed ellipti-
city, convolved with circular Gaussian seeing. For the effective radii we
took the values from Table III for NGC 3377 and for model I for NGC
4697, and set r, = 50" for NGC 4697 for model 2. The figure shows that
the decrease in the ellipticity into the core is consistent with a constant
ellipticity profile degraded by the seeing.

Franx, Illingworth, and Heckman (1989b) give analytic
formulas for errors in the photometric parameters, calculat-
ed by using a few terms of the Taylor expansion of the inten-
sity profile that is convolved with a noncircular seeing pro-
file. They note, in particular, the effect of a noncircularly
symmetric seeing point-spread function on the position an-
gles for round galaxies. Their main conclusions agree with
the results of our simulations.

V. RESULTS AND COMPARISONS WITH OTHER STUDIES

The results from this program are shown and tabulated
fully in Appendix A. The R-band surface brightness profile
plus the ellipticity and major-axis position angles profiles in
U, B, and R, as well as the B — R and U — R color gradients,
are tabulated (Table IX) and plotted (Fig. 15) there for
each of the 39 galaxies in our sample. In addition, the sin and
cos 30 and 46 terms are also plotted in Fig. 15. Specific com-
ments on individual galaxies are given in Appendix B for
characteristics that are distinct from the norm.

In order to characterize the properties of these galaxies
from the surface photometry, we have calculated “effective”
of “characteristic” parameters for each galaxy. We have de-
rived logarithmic gradients for the color, ellipticity, and po-
sition angle profiles, i.e, we have made a linear regression of
these parameters on the logarithm of the radius. We have
used all the data values within the inner and outer cutoff
radii. The color profiles are well represented by a linear fit
against log radius, and so can be characterized quite accu-
rately by such a relation. This is less true of the ellipticity and
position angle profiles. However, the logarithmic gradients
of € and 6 are a useful characterization for the purpose of
correlations between the parameters and so are given here.
The limitation of such a representation should be kept in
mind. The gradients are weighted somewhat towards
changes near the core, since there are more data points in the
inner regions. The logarithmic gradients are given in Table
IV, together with the fitted values at r = r,/2.

a) Comparison with other Studies: Luminosity Profiles and
Isophote Shapes

The surface photometry of the three galaxies presented in
Paper I was compared extensively with the results of other
authors to establish the validity of the techniques used. For
this sample we have chosen not to compare our results with
all the available surface photometry in the literature, but
only with a number of studies that present large bodies of
data. We have compared our results with those of King
(1978, hereafter referred to as KI), Michard (1985, hereaf-
ter referred to as MI), Kent (1984, hereafter referred to as
KE), Djorgovski (1985, hereafter referred to as DJ), Lauer,
(1985, hereafter referred to as LA ), and Jedrzejewski (1987,
hereafter referred to as JE); the first two authors worked
with photographic data, while the last four authors used
CCDs. The comparisons were made between the major-axis
surface brightness profiles using our data in the band closest
to the above author’s published band. DJ and LA used an R
band with a larger effective wavelength than used by us; KE
used the Gunn R band, which is narrower than Cousins R,
but has the same effective wavelength. JE worked in Johnson
B and R. We have compared the photographic magnitudes
of KI and MI with our B measurements. For comparison
with the KI and MI data we corrected our profiles to corre-
spond to their 45° profiles. The photographic data are valu-
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TABLE IV. Characteristic parameters.

A!c!

A(¢)

A(B-R)

Galaxy € Alog r ¢ Alog r B-R Alog r + UR Alog r *
(1 2 3) (4) (5) (6) (M @ @ (10) (11)
NGC 315 0.26 -0.005 438 19 176 -0.06 0.04 237 -0.14 0.09
NGC 720 0.40 0.154 141.7 -0.5 1.58 -0.09 0.02 2.10 -0.31 0.05
NGC 741 0.17 0.069 904 4.2 146 -0.14 0.05 2.13 -0.40 0.16
NGC 1052 0.27 0.017 114.8 55 1.61 -0.11 0.02 2.17 -0.28 0.02
NGC 1129 021 0.154  57.7 73.0 1.52 -0.09 0.07 2.15 -0.11 0.06
NGC 1600 0.34 -0.006 7.2 0.6 1.54 -0.02 0.02 2.17 -0.21 0.06
Abell 496 0.28 0.151 172.6 7.7 1.52 -0.12 0.09 2.09 -0.17 0.10
NGC 2300 0.19 0.074 78.0 8.0 1.62 -0.13 0.05 2.27 -0.33 0.12
NGC 2768 047 0.243  93.8 -2.8 140 -0.09 0.01 2.04 -0.29 0.06
NGC 2778 0.21 0.014 443 =35 177 -0.08 0.03 2.08 -0.21 0.03
NGC 2832 0.30 0.202 1589 51 142 -0.14 0.04 197 -0.27 0.05
NGC 3377 047 -0.049 394 1.3 151 -0.09 0.01 197 -0.33 0.03
NGC 3379 0.10 0.049 71.0 04 1.59 -0.05 001 2.18 -0.24 0.01
NGC 3605 0.37 0.142 18.6 -0.7 141 -0.03 0.02 1.80 -0.09 0.04
NGC 3665 0.24 -0.059  27.7 6.6 1.52 -0.12 0.02 2.03 -0.16 0.03
NGC 3801 0.37 0.189 121.1 0.6 1.52 -0.43 0.10 1.97 -0.81 0.15
NGC 4261 020  -0.058 159.5 1.3 1.60 -0.08 0.03 2.15 -0.24 0.05
NGC 4278 0.12  -0.037 227 16.7 1.57 -0.15 0.01 2.00 -0.40 0.05
NGC 4374 0.12 -0.106 128.8 0.7 1.60 -0.06 0.02 214 -0.23 0.01
NGC 4387 0.35 0.080 141.1 23 1.63 -0.04 0.01 2.12 -0.05 0.02
NGC 4406 0.24 0.102 121.1 -2.0 1.56 -0.03 0.02 2.08 -0.18 0.02
NGC 4472 0.17 0.063 159.2 -5.1 1.63 -0.05 0.02 2.17 -0.20 0.04
NGC 4478 0.17 -0.002 146.3 -12.6 155 -0.03 0.03 2.07 -0.15 0.05
NGC 4486 0.09 0.075 159.9 0.0 1.62 -0.07 0.02 2.03 -0.30 0.05
NGC 4551  0.25 0.048 68.7 1.7 1.55 -0.01 002 212 -0.02 0.02
NGC 4636 0.20 0.178 149.3 -11.7  1.54 -0.08 0.02 2.00 -0.30 0.05
NGC 4649 0.18 0.093 103.8 5.1 1.62 -0.06 002 227 -0.21 0.03
NGC 4697 0.37 -0.033 674 1.1 1.51 -0.08 002 197 -0.26 0.04
NGC 4874 0.09 0.030 39.7 185 1.50 -0.17 005 2.05 -0.24 0.07
NGC 4889 0.32 0.105 784 22 147 -0.11 0.04 219 -0.19 0.04
NGC 5638 0.09 0.069 144.8 11.9 1.56 -0.06 0.02 1.82 -0.25 0.05
NGC 5813 0.20 0.177 137.2 -11.4 159 -0.05 0.02 221 -0.10 0.03
NGC 5831 0.19 -0.165 124.0 253 1.63 -0.08 0.02 2.11 -0.18 0.03
NGC 5845 0.25 0.085 147.6 -9.6 1.68 -0.10 0.02 245 -0.09 0.02
IC 1101 0.43 0279 23.1 7.0 1.53 -0.09 0.09 2.22 -0.14 0.11
NGC 6051 0.29 0.184 165.2 05 1.73 -0.13 0.07 243 -0.03 0.05
NGC 6086 0.31 0.116 3.3 4.5 1.50 -0.04 005 2.12 -0.19 0.06
NGC 6269 0.27 0.040 788 -5.2  1.57 -0.14 0.07 2.25 -0.18 0.12
NGC 7626 0.14 0.085 9.6 8.8 1.69 -0.03 0.04 2.23 -0.21 0.07
Notes to TABLE IV

This table presents global parameters derived from the data presented in Table 2.9. We have fitted linear relations
to ellipticity, position angle, B — R and U — R as a function of the logarithm of radius. The slope and intercept of
these logarithmic gradients are given, with the intercepts being derived for r = 7,/2. In columns (2) and (3) we
present the fits for the ellipticity 1 — b /a, in columns (4) and (5) those for the position angle of the major axis, in
columns (6), (7), and (8) the logarithmic gradient for the B — R color, and in columns (9), (10), and (11) that
for the U — R color gradient. The color gradients are given in mag arcsec ™2 per dex in radius.
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able as a check on the sky subtraction process since they
typically extend to large radii. The nonlinearity of photo-
graphic emulsions is less of a concern at low surface bright-
nesses.

The bands were sufficiently close and the color gradients
in ellipticals small enough that no corrections were neces-
sary before comparison. No correction was made for the
zero-point difference that is typically R — R; = 0.25 mag
(see Paper I).

The comparisons in B are shown in Fig. 5(a) and those in
R are shown in Fig. 5(b). Some aspects of these comparisons
are noteworthy. In the R band, agreement with LA and KE
is excellent; any trend present in the data appears to be <0.1

mag arcsec ~ * over the radial extent of the data. The sense of
the differences is random, and the zero points are different in
a way that is consistent with the different filter combinations
used. The R data of JE exhibit surface brightness gradients
which are systematically less steep than our profiles; his gal-
axies always appear too bright in the outer parts. The effect is
unlike that expected from a systematic error in sky back-
ground level, since it extends smoothly to small radii. The R
differences are also too large to be caused by the different R
filter.

We have performed a linear regression on the difference
profile in magnitudes as a function of log radius (excluding
the three galaxies where the difference does appear to be due
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F1G. 5. Comparisons with other authors over the range defined by our
cutoff radii. R data are used in (2), and B datain (b). The sources corre-
sponding to the symbols are: open pentagons—(King 1978); open
squares—(Jedrzejewski 1987); open triangles—(Kent 1984); filled
squares—(Michard 1985); filled triangles—(Djorgovski 1985);
crosses—(Lauer 1985). Corrections have not been applied for zero-point
differences.

to uncertainties in the sky, i.e., NGC 3377, NGC 5638, and
NGC 5845), and find a systematically smaller gradient in
the JE data of 0.07 + 0.01 mag per dex in radius. In B the
agreement with JE is good; the regression yields a formally
insignificant result.
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The data of DJ were obtained using the same equipment as
the data of LA, but extend to larger radii. In general, DJ
reports fainter surface brightness than both we and LA find
at these large radii. It seems likely that the sky background
values of many of the galaxies reported by DJ have been
overestimated. In many cases the galaxies filled the field of
his CCD, which could have led him to overestimate the
brightness of the sky. In this case, one might expect the most
discrepant galaxies to be the large ones, and the smaller ones
to be in better agreement; this does not appear to be uniform-
ly true. With the exception of NGC 2768, for which there is a
large difference with the data of MI, the comparisons with
KIand MI show that our respective datasets agree well. The
problem with NGC 2768 may be due to its large ellipticity
and the derivation of the 45° profile in the presence of large
quantities of dust.

The ellipticity and position angle profiles generally agree
quite well. The differences with LA, for example, are small,
usually being within 0.02° and 2°, respectively. Differences
with DJ are often larger, and systematic in a few cases.

Other authors (e.g., Carter 1978, 1987; Lauer 1985; Bend-
er and Mollenhoff 1987; Bender et al. 1988) have also de-
rived higher-order terms, though typically they have taken a
more limited approach and have just derived the cos 46
term, and sometimes the cos 30 term. Our sin and cos n6
profiles agree well with those in the previous references.

The high-order terms in Table V were determined by aver-
aging several values around the maximum amplitude. We
have also tabulated the radius of the peak for the cos 49 term
(C4), since this is the term that has attracted the most inter-
est because of its probable correlation with other properties
of the galaxies.

The C4 values were compared with those from Bender et
al. (1989). Figure 6 shows that the agreement is excellent.
Bender et al. use a slightly different definition, with different
normalization: if there is a maximum (or minimum), they
select the peak value, as we do, but if the profile is monotoni-
cally increasing or decreasing, they take the value at one
effective radius. However, for the 19 galaxies we have in
common, only two have monotonically increasing or de-
creasing profiles. For this reason we would expect the C4
values to be the same, but on the average our C4 values are
systematically larger by =~40% than theirs. This is presum-
ably a result of the different normalization used.

Franx, Illingworth, and Heckman (1989b) showed that
representing the deviations by their phase and amplitude
makes it easier, in many cases, to understand the nature of
the structure that contributes to the deviations from ellipti-
cal isophotes. We show two examples below.

b) Comparison with other Studies: Color Gradients

A number of authors have published color gradients,
usually for a small set of galaxies. A comparison with the
color profiles of several authors is made in Fig. 7. The results
are not encouraging. In general, the agreement is still not as
good as one would like. However, the difficulty of measuring
color changes of a few percent over a range in surface bright-
nesses of several decades should not be underestimated. In
the mean, most authors with CCD data are consistent, find-
ing small negative gradients in ellipticals, consistent with
those found from the concentric aperture measures, and so
the reality of gradients of this form is probably well founded,
even if individual cases should be treated with some skepti-
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TABLE V. Effective higher-order terms.

Galaxy C3 S3 C4 rca S4
n
(1) (2) 3) 4 (65 (6)

NGC 315 0.002 -0.001 -0.006 12 -0.002
NGC 720 0.002 -0.001 -0.003 12 -0.004
NGC 741 0.003 0.001 0.002 16 -0.002
NGC 1052 0.003 -0.002 0.000 10 -0.001
NGC 1129 -0.014 0.008 -0.008 22 -0.002
NGC 1600 -0.001 0.000 -0.015 11 -0.002
Abell 496 -0.007 -0.003 0.006 13 0.005
NGC 2300 0.006 0.003 0.011 38 0.003
NGC 2768 0.002 -0.001 0.006 48 0.005
NGC 2778 -0.001 -0.002 -0.003 22 0.000
NGC 2832 0.000 -0.008 -0.004 16 0.008
NGC 3377 0.007 0.002 0.019 6 -0.002
NGC 3379 -0.006 0.003 0.003 16 0.006
NGC 3605 0.002 0.002 -0.012 14 -0.004
NGC 3665 0.002 -0.003 -0.002 50 0.000
NGC 3801 -0.016 -0.012 -0.092 5 0.030
NGC 4261 0.003 -0.004 -0.019 11  0.005
NGC 4278 0.005 -0.011  0.000 - -0.007
NGC 4374 0.003 0.000 -0.006 14 -0.002
NGC 4387 0.002 -0.001 -0.010 8 -0.005
NGC 4406 0.002 0.000 -0.010 17 -0.004
NGC 4472 -0.001 -0.003 -0.004 20 0.004
NGC 4478 0.002 -0.002 -0.015 25 0.013
NGC 4486 0.001 -0.002 0.001 - 0.001
NGC 4551 -0.003 0.002 -0.011 10 0.002
NGC 4636 -0.002 -0.002 -0.001 4 0.004
NGC 4649 0.004 0.004 -0.005 25 -0.006
NGC 4697 0.001  0.003 0.026 22 0.002
NGC 4874 0.010 0.004 -0.004 45 -0.012
NGC 4889 -0.001 0.001 -0.002 9  0.002
NGC 5638 0.000 0.000 0.001 - -0.002
NGC 5813 0.002 0.002 0.001 30 -0.002
NGC 5831 0.002 0.001 0.008 16 -0.005
NGC 5845 0.006 -0.002 0.013 10 -0.006
IC 1101 -0.002  0.002 0.002 7 -0.002
NGC 6051 0.001  0.000 -0.002 7 0.002
NGC 6086 0.002 0.003 0.010 25 -0.005
NGC 6269 -0.002 -0.002 0.005 32 0.002
NGC 7626 -0.006 -0.005 0.004 6 0.004

Notes to TABLE V
In columns (2), (3), (4), and (6) we give the C3, S3, C4 and
S4 terms, averaged as explained in the text. In column (5) we
list the radius at which the maximum or minimum in C4 is
reached.

cism. The advantage of the larger sensitivity of U — R is
apparent.

Boroson, Thompson, and Shectman (1983) determined
color gradients in several bands for NGC 2300, 2768, and
4486 using the drift scan method on the Palomar 60 in. tele-
scope. Comparison of their B — R, gradients with ours
shows that they are consistent in the sense of the offset that
results from their use of R, compared to our R. The expect-
ed offsets can be determined from the relation given in
Paper I, typical color differences are (B — R); — (B — R)c

=0.25 mag for galaxies with (B— R)c = 1.6, a little
smaller than that seen in the comparison for these three gal-
axies.
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FIG. 6. A comparison between our C4 values and the a(4)/a
parameter from Bender et al. (1988) for all those galaxies in
common between the two samples.

Cohen (1986) determined color gradients for NGC 4406,
4472, and 4486 using the 4-shooter on the Palomar 5 m. She
finds small gradients in g — » (Gunn system), which are
broadly consistent with what we find. However, her data
consistently show a slight reddening at large radii, unlike
what is generally seen in our data.

Franx, Illingworth, and Heckman (1989b) obtained col-
or gradients in B — R and U — R for 17 southern elliptical
galaxies, using the same general approach, including the
same filter system. The range for which they have obtained
color gradients is in most cases smaller, since they used de-
tectors with a smaller field. The general trend they see is the
same: B — R and U — R both become bluer with increasing
radius, with the gradients in U — R being much larger than
thosein B — R. Only one galaxy is common to both samples,
i.e., NGC 7626. The error bars on the Franx, Illingworth,
and Heckman data are large, and so, while the difference
looks significant in Fig. 7, one cannot draw any useful con-
clusions about the relative quality of the two datasets from
this example. ;

Bender and Mollenhoff (1987) have also undertaken a
large program of CCD surface photometry in which they
measured V' — I and R — I color gradients for a number of
Virgo ellipticals. They also find that ellipticals typically be-
come bluer with radius, and have noted that structure occurs
in the color profiles; for example, the change in slope in the
color gradient in NGC 4472 (which we see in B — R). The
small slopes that they find in their ¥ — I and R — I profiles
are similar to those found by us in B — R, as would be ex-
pected since the sensitivity to population/metallicity
changes is comparable in these bands. Their results confirm
the value of U — R with its much enhanced sensitivity to
metallicity and population changes.

Recently more color profiles have become available from
Vigroux et al. (1988) in Band R, using CCD photometry. In
a paper interpreting these color gradients Vader et al.
(1988) tabulate the color gradients they find in B — R; per
decade in radius. In Fig. 8 a comparison is made for the nine
galaxies we have in common. Our gradients have been con-
verted to the Johnson system by multiplying them by a factor
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1.14. The agreement is reasonably good; all points lie close to
the line of equal gradients, except NGC 5638, for which the
gradient from Vader et al. is much larger than the value we
found. These authors do not fully take into account the ef-
fects of seeing. In addition, their estimate of the errors in the
sky background determination are apparently too small. To-
gether these effects, seeing and sky determination, could be
responsible for the scatter in Fig. 8.
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F1G. 8. A comparison of the logarithmic gradients in color in
mag per decade in radius between Vader et al. (1988) and us.
Our values have been transformed to the Johnson system.

¢) Deviations from Elliptical Isophotes

In general the isophotes of these galaxies are very close to
ellipses. However, as noted by several authors (e.g., Carter
1978; Lauer 1985; Bender et al. 1988) deviations are com-
mon at the 1% level. With rare exceptions, primarily of gal-
axies that contain substantial quantities of dust, the maxi-
mum deviations from ellipses are 1.5%-2%, with 0.5%
being a more typical value. Although small, the 30 and 46
terms given are real; they agree between B and R, as well as
with the results of other authors (e.g., Bender et al. 1988).

While we have represented these deviations by the ampli-
tudes of the cos and sin 30 and 46 terms, representing them
as the phases and amplitudes of the 36 and 46 terms has
value for understanding the structure(s) that contribute to
the deviations from ellipses (Franx, Illingworth, and Heck-
man 1989b). The amplitudes and phases, determined from
the peak values as for the Table V results, are tabulated in
Table VI. The radius of the fourth-order peak is also given.

Differences in B and R are also a useful diagnostic of the
presence of dust. Nonzero 36 terms are often found at the
radius where a galaxy is known to have dust absorption; for
example, in NGC 315 (Butcher, Van Bruegal, and Miley
1980; Kormendy and Stauffer 1987), NGC 1052 (Davies
and Illingworth 1986), NGC 2768 (Strom et al. 1978),
NGC 3665 (Kotanyi 1979), NGC 3801 (Heckman et al.
1983), NGC 4278 (Gunn 1979), and NGC 4374 (Hansen
Ngrgaard-Nielsen, and Jorgensen 1984).

Again, a diagnostic for the presence of dust is that the 36
and 46 terms differ in Band R. The integrated colors of these
galaxies are no redder than dust-free ellipticals so it appears
that the amplitude of the 30 terms and the differences seen
between B and R are much more sensitive indicators of the
presence of small quantities of dust than integrated colors.
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TABLE VI. Effective amplitudes and phases of the higher-order terms.

Galaxy A3 @3ma;  $3N A4 raq Pdma;  d4N
(deg)  (deg) " (deg) (deg)
(1) (2) @3 @ 6 (6 M  ®

NGC 315 0.003 15 55 0.004 25 50 0
NGC 720 0.003 115 10 0.004 23 55 15

NGC 741 0.007 60 - 0.007 - 80 -
NGC 1052 0.003 0 55 0.003 20 48 70
NGC 1129 0.015 52 5 0.008 - 65 68
NGC 1600 0.002 60 - 0014 11 45 55
Abell 496 0.009 70 60 0.007 13 10 -
NGC 2300 0.006 0 90 0.007 38 85 80

NGC 2768 0.003 110 20 0.007 70 10 15
NGC 2778  0.002 90 0 0.002 22 40 0
NGC 2832 0.008 80 65 0.0056 16 30 7
NGC 3377 0.002 40 70 0.019 6 0 40
NGC 3379 0.004 50 0 0.006 21 16 85
NGC 3605 0.002 20 40 0.012 16 47 67
NGC 3665 0.003 110 20 0.002 40 60 80
NGC 3801 0.010 60 5 0.016 5 40 -
NGC 4261 0.003 100 75 0.021 7 43 22
NGC 4278  0.004 100 115 0.004 40 80 85

NGC 4374 0.002 0 5 0.003 14 48 85
NGC 4387 0.003 0 20 0.012 8 53 10
NGC 4406  0.005 0 0 o.011 17 50 10
NGC 4472  0.003 80 60 0.006 28 35 15
NGC 4478  0.004 105 10 0.020 22 37 0

NGC 4486  0.001 60 - 0.001 - 40 -
NGC 4551  0.003 50 115 0.010 10 40 15
NGC 4636  0.003 50 15 0.004 - 50 25
NGC 4649  0.006 20 0 0.008 25 55 70
NGC 4697  0.005 30 95 0.026 22 00 67
NGC 4874  0.008 5 40 0.012 30 60 5
NGC 4889  0.004 55 10 0.003 16 50 5
NGC 5638 0.001 0 - 0.001 - 80 45
NGC 5813  0.004 20 90 0.003 30 65 30

NGC 5831  0.003 0 5 0.009 16 0 25
NGC 5845  0.005 110 12 0.010 17 80 45
IC 1101 0.004 40 - 0.003 10 60 80

NGC 6051 0.003 90 75 0.002 20 40 30
NGC 6086 0.006 25 - 0006 13 85 87
NGC 6269 0.005 60 15 0.005 25 0 80
NGC 7626 0.004 105 100 0.005 19 20 30

Notes to TABLE VI

In columns (2) to (4) we list the effective amplitudes and phases
of the third order Fourier terms (A3 and ¢3). In column (3) this
phase is given with respect to the major axis, and in column (4)
with respect to a fixed position angle (i.e., North). Columns (5),
(7), and (8) list the same data for the 4th-order terms. We also
tabulate (in column 6) the radius at which A4 reaches its maxi-
mum or minimum. The angles in columns (3) and (4) are modulo
120°, while those in columns (7) and (8) are modulo 90°.

Therefore, many of the other galaxies with significant non-
zero 36 terms and differences in the 36 and 46 terms may
also be dusty. A way of confirming this could be through
color maps (see, e.g., the maps of NGC 1052 in Davies and
Illingworth 1986). Possible candidates for dust from our
sample that have either significant 36 terms or notable dif-
ferences in the amplitudes in B and R would be NGC 2300,
NGC 2832, NGC 3377, and NGC 5813.

For the remaining galaxies the nonzero third- and fourth-
order terms presumably represent nonelliptical distortions
in the stellar densities. Even for those with modest amounts
of dust, some of the structure may well be intrinsic to the
stellar component. One other class of galaxies needs to be
distinguished in the discussion that follows. These are the
large, often cD galaxies, Abell 496, IC 1101, NGC 741,
NGC 1129, NGC 4874, NGC 4889, NGC 6051, NGC 6086,
and NGC 6269, which are strongly contaminated by close
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companion galaxies, and are often of low surface brightness.
For these galaxies the data are noisy and have had the many
companions removed, rendering the data generally unsuita-
ble for deriving deviations from ellipses.

There are only three galaxies in our sample which are con-
sistent with having truly elliptical isophotes. They are NGC
4486, NGC 4636, and NGC 5638. Omitting the regions with
dust it is possible to add NGC 5813 and NGC 3665 to this
group. The remaining galaxies, with the exception of the
large (cD?) galaxies noted above, can be usefully “classi-
fied” into three groups as follows:

(1) “Box-shaped” galaxies. These galaxies show a signifi-
cant negative cos 46 term, and usually a small sin 46 term.
This group contains NGC 720, 1600, 3605, 4261, 4374,
4387, 4406, 4472, 4478, 4551, and NGC 4649. Its members
have small third-order amplitudes, except for NGC 4374
which contains dust and the outer parts of NGC 4649, where
the influence of its companion, NGC 4647, is noticed. It is
interesting to note that nearly half of these galaxies are low-
luminosity elliptical companions (NGC 3605, 4387, 4478,
and 4551) to giant ellipticals—out of a sample this is strong-
ly biased towards luminous objects.

(2) “Disk-like” galaxies. The galaxies in this group have
positive cos 46 terms, that have been interpreted as being
due to an embedded faint disk component. This disk is not
comparable with those seen in SO galaxies, since the contri-
bution of this disk anywhere to the surface brightness never
amounts to more than a few percent. The fourth-order am-
plitudes are large, with phases of 0° (modulo 90°). Members
of this group are NGC 2768, 3377, 4697, 5831, and NGC
5845. NGC 3377 and NGC 4697 are excellent examples of
ellipticals with weak disks. It is noteworthy that in the outer
regions of all five galaxies, where the relative contribution of
the disk has decreased considerably, the appearance of the
isophotes changes: NGC 3377 and NGC 2768 become boxy,
while the phase of the other three changes to ~65°, interme-
diate between “box-like” and “disk-like.”

(3) Exceptions. Along with the dusty galaxies, this group
consists of NGC 2778, 2832, 3379, and 7626. The ampli-
tudes in this group are small, but still significantly nonzero.
The structures are complex and not as easily interpreted as
the two “classes” above. The third- and fourth-order devia-
tions in NGC 2832 are probably caused by its close compan-
ion, NGC 2831. NGC 3379 is noteworthy. The third- and
fourth-order amplitudes at 50° and 15°, respectively, indicate
a complex shape, with a “diamond-like” character.

While generally small, there are good indications that
these terms do convey useful information about the dynami-
cal properties and dynamical history of ellipticals (e.g.,
Bender et al. 1989). This is discussed further in Sec. VI.

For those galaxies where the high-order deviations could
be determined to large radii (i.e., excluding those galaxies
whose outer parts were contaminated by companions/su-
perpositions typical of the large galaxies in clusters), it is
striking to note that most of the amplitudes in 30 and 46 peak
at radii comparable to 7, or smaller.

Franx, Illingworth, and Heckman (1989b) also noted
that plotting the phases against a fixed position angle
(P.A.), as opposed to the major-axis position angle enabled
one to readily identify features that do not follow the major
axis, i.e., they do not twist. They show a striking example of a
skew ‘““disklike” structure in NGC 1700. We have plotted the
phases against north for our galaxies. Comparing the con-
stant PA phases with the phases plotted against the major-
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axis position angle, structures can occasionally be seen
which do not follow the major axis. In our sample we have
found two examples of this. They are NGC 1129 nd NGC
5831. The amplitudes of the third- and fourth-order terms
and their phases with a fixed zero-point are plotted in Fig. 9.

Both galaxies have a large position angle twist; NGC 1129
by 901 NGC 1129 is a large elliptical in a small cluster. Such
galaxies have probably grown by digesting their neighbors—
the structurein NGC 1129 could have resulted from a recent
such acquisition. The position angle twist in NGC 1129 is so
dramatic that we could even be seeing the result of a merger
of two comparable ellipticals. On the other hand, if the gal-
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F1G. 9. The 36 and 46 Fourier terms presented as fractional amplitudes (in
units of 0.001) and phases in degrees with respect to north for NGC 1129
and NGC 5831. In the former the position angle of the 30 structure remains
constant, while in the latter it is the 46 structure that remains at constant
position angle while the major axis twists. B data are shown as open circles,
while R data are given as filled squares.
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axy is triaxial with different axial ratios, this twist might be
intrinsic, and the result of viewing it along a favorable line of
sight. Atradiilarger than 30", the center of the isophotes has
moved significantly to the SW, an effect seen in both B and
R. By r= 100", the center has moved 12” away from its
original position. This favors the merger hypothesis. In Fig.
14(a) we have added a grey-scale map of the central regions
of this galaxy.

In NGC 5831 the most likely interpretation of the residu-
als is that there is a weak disk that does not twist in projec-
tion, unlike the major axis (cf. Fig. 15).

VI. DISCUSSION

The multicolor surface photometry of the sample of galax-
ies presented has been acquired and analyzed in a consistent
way, and is large enough to allow us to explore the correla-
tions of dynamical, photometric, and other properties of el-
lipticals. In addition, these data provide a valuable comple-
ment to the large body of kinematical data that is now
available.

In Table VII we have compiled data from other sources on
the kinematics and photometry of the galaxies in our sample.
The values of v,,, and v/o were taken from DEFIS, the cen-
tral velocity dispersions and recession velocities were taken
from Davies et al. (1987), and the photometric parameters
such as the apparent magnitude, and the mean surface
brightness within », were taken from Burstein et al. (1987),
when available. The radio powers were mostly taken from
Birkinshaw and Davies (1985). From these data absolute
magnitudes and radio fluxes were derived assuming a uni-
form Hubble flow with H, = 50 km s ~' Mpc !, after cor-
recting for the velocity with respect to the centrod of the
local group. IRAS 100 um fluxes wee taken from Knapp et
al. (1989). The x-ray fluxes are from Canizares, Fabbiano,
and Trinchieri (1987).

A number of correlations between the characteristic pa-
rameters of the stellar populations of galaxies, their struc-
ture, and kinematics will be explored using the data assem-
bled in the previous section (Tables IV-VI) and the
collected data of Table VII.

a) Box-Like and Disk-Like Isophotes

Bender (1988) has suggested that elliptical galaxies can
be separated into two classes: those with “box-like” iso-
photes (C4 <0), that are flattened by anisotropic velocity
dispersions, and those with “disk-like” isophotes (C4 > 0)
that are flattened by rotation. In Fig. 10(a) we plot (v/0)*
vs C4 for our sample, after removing the ellipticals with dust
and the brightest cluster galaxies (including cD’s) (see Sec.
V).Our data show a similar distribution to that shown by
Bender, with some detailed differences. It appears that for
galaxies that are within a factor of 2 of being rotationally
flattened (for which (v/0)*=1), (v/0)* is independent of
C4. That is, for rotationally flattened ellipticals, there are
roughly comparable numbers of elliptical galaxies with boxy
as with disk-like isophotes. Bender’s sample lacked the gal-
axies with boxy isophotes and (v/0)* > 0.5 such as NGC
2778, 3605, 4261, 4387, 4478, and 4551. It is interesting to
note that four of these: NGC 3605, 4387, 4478, and 4551 are
low-luminosity companions to luminous ellipticals, and that
NGC 2778 has a close companion.

For galaxies that have (v/0)* <0.5 there appears to be a
strong preference for box-shaped isophotes. Essentially no
galaxies are found that have low rotation and disk-like dis-
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TABLE VII. Global parameters from the literature.

Galaxy Te (6)m (v/0)* Br Mg, SB. Fi00 log Psguz log ALx
kpc kms™! mag mag mag arcsec™? mly WHz=!  ergs™!
(1 2 3) @ 6 © M ®) 9) (10)
NGC 315 35 352 0.17 12,50 -23.59 22.36 360+ 90 23.09 41.91
NGC 720 8.7 247 047 11.15 -21.53 21.14 <56 <19.02 41.06
NGC 741 30 280 0.75 12.05 -23.10 21.64 1000+ 96 22.39 - -
NGC 1052 5.0 206 0.70 11.53 -20.94 21.11 1400+ 60 21.96 --
NGC 1129 >26 335 -- 11.256 -23.68 -- - - - - - -
NGC 1600 26 321 0.13 12.01 -23.14 22.17 170+ 65 21.24 41.81
Abell 496 >47 354 0.11 13.42 -23.16 -- - - - - -=
NGC 2300 12 260 -- 1199 -21.54 21.51 <81 - - 41.10
NGC 2768 10.1 198 0.48 10.92 -21.16 21.56 1220+ 56 19.93 - -
NGC 2778 34 166 1.11 12,50 -19.51 21.38 450+ 85 <19.21 -
NGC 2832 31 354 0.21 12.39 -22.86 -= 1330+ 137 - - - =
NGC 3377 3.0 131 0.80 11.10 -19.50 20.76 310+ 57 <17.90 <39.60
NGC 3379 2.5 201 0.63 10.33 -20.20 20.16 <96 18.31 <39.80
NGC 3605 2.3 120 0.70 13.06 -18.34 21.42 - - <18.18 -
NGC 3665 134 205 1.20 11.75 -21.36 -- 6690+ 163 20.96 - =
NGC 3801 138 168 0.85 13.00 -21.33 - - 2490+ 78 - - -
NGC 4261 8.7 294 0.78 11.38 -21.78 21.25 130+ 43 22.69 - -
NGC 4278 2.6 266 078 11.13 -19.87 20.60 1650+ 53 21.18 - =
NGC 4374 5.9 287 0.23 10.23 -21.53 20.81 1030+ 109 22.02 40.79
NGC 4387 2.1 84 0.72 12.95 -18.79 20.80 <158 <18.38 --
NGC 4406 109 250 0.22 10.02 -21.79 21.65 290+ 59 <18.39 41.58
NGC 4472 119 287 037 9.32 -22.34 21.40 <94 20.46 41.71
NGC 4478 1.7 149 1.05 12.15 -19.52 19.87 <66 <18.83 --
NGC 4486 115 361 0.18 9.62 -22.14 21.60 360+ 91 23.49 -=
NGC 4551 2.2 100 069 12.85 -18.94 20.95 <137 <18.36 -=
NGC 4636 12.2 191 0.32 10.50 -21.46 22.23 <152 20.06 41.64
NGC 4649 8.5 341 041 9.83 -21.89 21.10 970+ 57 19.89 41.40
NGC 4697 9.9 165 0.82 10.11 -21.63 21.41 1100+ 67 <18.40 40.27
NGC 4874 45 245 -- 1290 -23.40 23.24 <95 - - --
NGC 4889 26 381 0.11 12,57 -23.23 21.96 <61 20.23 -
NGC 5638 4.6 159 1.31 12.20 -20.47 21.28 400+ 106 <18.74 - -
NGC 5813 9.1 238 0.07 11.57 -21.23 21.82 <88 19.35 --
NGC 5831 4.5 166 058 12.46 -20.33 21.42 - - <18.83 -
NGC 5845 0.7 251 120 13.10 -19.27 18.38 200+ 87 <18.83 - -
IC 1101 >110 375 0.08 13.93 -24.40 - - -- - - --
NGC 6051 25 243 -- 1349 -22.95 - - 490+ 296 - = - =
NGC 6086 24 304 -- 13.50 -22.95 - - <172 - - --
NGC 6269 50 228 -- 13.02 -23.63 - - - = - - --
NGC 7626 15 234 0.21 1217 -22.35 21.87 <113 21.79 41.30
Notes to TABLE VII

Incolumn (2) we present the major axis effective radii in kpc, using effective radii from Table 2.3 and group velocities from Davies et al.
(1987), corrected for the motion with respect for the centroid of the local group. The mean velocity dispersion in column (3) inkm s '
and the (v/0)* in column (4) are taken primarily from DEFIS and Malumuth and Kirshner (1985). The total blue luminosity in
column (6) (in mag) is derived from the apparent blue luminosities given by Burstein et al. (1987) (in column 5), using H, = 50
km s~ ' Mpc~'. The mean blue surface brightness inside an effective radius was derived using the luminosities and effective radii here,
and tabulated in column (7) in mag arcsec ™2 The IRAS 100 zm fluxes in column (8) were taken from Knapp ez al. (1988) and are
given in mJy. The radio powers (in W/Hz) were mostly taken from Birkinshaw and Davies (1985). The x-ray fluxes in ergs/s are from
Canizares et al. (1987).
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tortions. Could this be the result of an observational selec-
tion effect? As Bender and others have noted, the existence
of isophote residuals from ellipses that have positive ampli-
tude for the cos 46 term, C4, is indicative of the presence of a
weak disk. Such a disk will typically be rotating much faster
than the body of the elliptical. Major-axis velocity profiles
will then have contributions from both the disk and the ellip-
tical. The measurements of velocities in multicomponent
systems with Fourier or CCF (cross correlation) is known
to be biased towards the narrow lined, and thus the more
rapidly rotating component (see, e.g., Whitmore 1980;
Franx and Illingworth 1988). Thus the major-axis velocity
in such a composite system would be biased towards higher
values, leading to an overestimate of (v/o)* [cf. Fig. 3 of
Bender (1988) and Fig. 10(a) ]. An example of an elliptical
where the velocity drops significantly away from the major
axis is NGC 4697 (Binney, Davies, and Illingworth 1990).

This may be a factor in the distribution of values in the C4
vs (v/0)* plane, but does not diminish the remarkable cor-
relations of C4 with radio power and x-ray luminosity seen
in these data by Bender et al. (1989). The relevant param-
eter for these other correlations may not be the rotational
properties of the elliptical body, but the presence or absence
of a disk.

The picture is also complicated because some galaxies
have both disk-like and box-like distortions of their iso-
photes. An example is NGC 3377 which has positive C4 for
r < 40" and negative C4 for r > 40”. What is the appropriate
C4 to use in Fig. 10(a) in galaxies such as NGC 33777 We
used the inner value, but this is rather ad hoc. Part of the
problem is using C4 alone to describe the fourth-order re-
siduals, and thus ignoring the sin 4 component—or, alter-
natively, ignoring the phase of the effects. As noted by
Franx, Illingworth, and Heckman (1989b), certain struc-
tures do not follow the major axis, and so use of the phase-
amplitude form for the 30 and 46 terms may subsequently
prove to be more useful in understanding the source of these
deviations from ellipses. We will explore this in a future pa-
per.

We have also investigated other correlations. We find no
correlation in this sample of elliptical galaxies between ellip-
ticity and C4; there are as many flattened galaxies in our
sample with box-shaped isophotes as with disk-like pertur-
bations. Our sample is too small to show the F-shaped distri-
bution noted by Bender et al. (1989). Initial inspection of
Fig. 10(b) indicates no correlation between C4 and luminos-
ity, although there is a deficit of luminous galaxies with disk-
like isophotes. However, if one excludes the galaxies that are
close companions of giant ellipticals, the trend for luminous
galaxies to be boxy, and for less luminous ones to be disk-like
becomes clearer. Since the companion galaxies have other
distinct properties, namely minimal or zero color gradients
and appear to be rotationally flattened, they may well form a
physically separate group of objects.

We also show the correlation with radio power in Fig.
10(c), as did Bender et al. (1987), and Bender et al. (1989).
The lack of powerful radio galaxies among those with posi-
tive C4 is striking. Within the subset of galaxies with nega-
tive C4, there is no relation at all with (v/0)*, with radio flux
or with luminosity [see Figs. 10(a)-10(c)].

Other correlations have been made. There is a slight ten-
dency for galaxies with larger negative C4 to have smaller
color gradients, both in B — R and in U — R [Figs. 10(d)
and 10(e)]. This effect disappears when one removes the
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low-luminosity companions to bright ellipticals. If boxy iso-
photes arise from mergers or accretion events, as has been
suggested by Binney and Petrou (1985), one might expect
boxy galaxies to show smaller gradients. However, it would
be unexpected if the lowest-luminosity galaxies were the
ones that most strongly showed the effects of merging or
accretion.

One correlation which did arise was between the logarith-
mic gradient of the ellipticity and the fourth-order ampli-
tude (Table VI). Ellipticals with large fourth-order ampli-
tudes, with the exception of NGC 5831 appear to have small
ellipticity gradients [Fig. 10(f)]. The implications of this
correlation are not clear.

b) Color Gradients

The colors of the galaxies in this sample become bluer with
radius in both U — R and B — R, with an occasional profile
remaining constant in color. The color gradients do not de-
pend upon ellipticity, IRAS 100 um flux (after removing the
dusty ellipticals), or the twist in position angle. After remov-
ing NGC 3801, a particularly dusty galaxy, we find that the
mean logarithmic gradient in U—R, ie, A(U—R)/
A(logr) is — 0.20 + 0.02 mag per dex in radius, and is

— 0.09 + 0.02 mag per dex in radius in B — R. Such values
are consistent with those found by Sandage and Visvanathan
(1978). Transformation of their results to our system yields
values of — 0.21 and — 0.10, respectively.

The B — R and U — R gradients correlate with each other
(Fig. 11), but with some scatter. While recent star formation
and/or age differences could be responsible for some of the
scatter, it is most likely that the scatter arises from observa-
tional errors introduced by the uncertainty in the sky levels.
We have made an attempt to determine this error. Since the
sky uncertainties affect the outermost points, in a nonlinear
way, the error in the gradient is dependent on the outer cut-
off radius. However, since the color profiles are usually lin-
ear, when plotted against the logarithm of radius, the gradi-
ent can be determined in a region where the sky errors are
less important.

We have estimated our errors in the gradients in the fol-
lowing way: We made three color profiles, namely the origi-
nal, and two in which the color in the outermost point was
0.1 mag bluer and redder, as a result of the expected uncer-
tainty in the sky (10% ). From these profiles we used all data
points up to 0.57,, and determined the gradients using a
least-squares method. The final error was a combination of
the differences between these gradients with respect to each
other and with respect to the original gradient, calculated
using all the points. Typically, they are ~0.03 magin B — R
and 0.05 mag in U — R. Most of the scatter in Fig. 11 could
be caused by these uncertainties, but for a few galaxies, like
NGC 5845 and NGC 3665, other factors appear to be
playing a role.

Assuming that the color gradients are due to metallicity
changes (decreasing metallicity), it is of interest to see if the
ratio of the U — R to the B — R mean color gradients are
consistent with such a hypothesis. Since, in the past, models
and/or measurements have been made in colors other than
those studied here, we have used a multistep process to de-
rive the expected metallicity change for a given color change.
We used two relations by Burstein ez al. (1984) from Galac-
tic and M31 clusters, to find the dependence of U — ¥ and
B — V on Mg,. To convert Mg, to [Fe/H] we used the
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FiG. 11. Logarithmic color gradients in U — R in mag dex ~' against color
gradients in B — R. There is a correlation, but it is weaker than might be
expected. This is mainly due to the large scatter in A(B — R) from observa-
tional uncertainty.

relation from Mould (1978), [Fe/H] = 3.9 Mg, — 0.9, as
suggested by Terlevich etal. (1981). U — Vand B — ¥V were
converted to our observed U — R and B — R using synthetic
colors for G-, K-, and M-type stars from the stellar library by
Gunn and Stryker (1983). We found the following relations
for converting ¥ — R toB— Vand U— V:

(B—R) =1.465(B— V) +0.098

and
(U—R)=1.125(U—- V) + 0.325.

Taking this together we determined that a change of 1 dex
in [Fe/H] would give a change of 0.46 mag arcsec "2 in
B — Rand 1.01 mag arcsec ~% in U — R for the mean colors
of these galaxies, so that the expected slope of the
A(U— R)/A(B — R) relation is 2.19. Our observed ratio of
2.2 4 0.5 is quite consistent with this value and with the
hypothesis that the gradients are due to metallicity changes.
Our observed gradients correspond to a decrease in metalli-
city of 0.20 in. [Fe/H] per dex in radius for metallicities
around solar. Given the uncertainties of the Mg, vs [Fe/H]
calibration, this figure can be in error by a factor 2.

We have also derived the expected value of the
A(U— R)/A(B — R) ratio by using the artificial colors
from Peletier, Valentijn, and Jameson (1990). They calcu-
lated integrated colors for composite stellar systems using
the Yale (Green, Demarque, and King 1987) isohrones. For
systems without a blue horizontal branch contribution, their
values for A(U — R)/A(B — R) are given in Table VIII.

These values while lower than what we derive, are certain-
ly within the uncertainty of our mean ratio of 2.2 + 0.5. In-
creasing the horizontal branch contribution in the outer
parts results in larger numbers, as would be expected, and
would give ratios closer to the observed value. Together
these two approaches suggest that the observed ratios are
consistent with the assumption that the color gradients are
caused by a change in metallicity.

One should not infer too much from this conclusion, how-
ever, since the observational errors are large. The results
from different authors are not as consistent as one would
like. The differences are often comparable to the gradients,
particularly in B — R. While difficult to measure, U-band
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TABLE VIII. Gradient ratios.

., YU-R)

age range in JEB_R) (B—R)
(1) )] 3)
20 Gyr 0.04 -0.01 1.79
0.01 - 0.001 1.73
16 Gyr 0.04 -0.01 1.711

0.01 - 0.001 1.64

Notes to TABLE VIII
In column (3) we list the expected gradient ra-
tio between U — R and B — R for integrated
stellar populations for two different ages and
two different metallicities (from Peletier et al.
1989).

data are very valuable since the gradients seen in U — R are
large enough that observational uncertainties do not domi-
nate as they can in B — V and B — R. We believe that the
reality of color gradients is not now in question, and that the
most likely explanation for them is a decrease in the metal
abundance with radius. However, the detailed form of this
variation is still rather poorly determined.

Vigroux et al. (1988) and Vader et al. (1988) have mea-
sured B — R color gradients for 36 early-type galaxies. For
their luminous galaxies, with measured kinematics, they
found that galaxies with large (v/0)*, i.e., rotationally sup-
ported galaxies (see, e.g., DEFIS), have large color gradi-
ents. In the mean, as noted in Sec. V, their gradients agree
with ours. In Figs. 12(a) and 12(b) we plot our B — R and
U — R gradients against (v/0)* for our whole sample with
the exception of the largest galaxies (typically cD’s and first-
ranked cluster members). The correlation noted by Vader et
al. does not appear with this sample. There is a hint in Fig. 12
that those with larger B — R gradients may be more rota-
tionally supported, but the opposite might be suggested by
the U — R data; neither “trend” is at all significant.

Color gradients (and absolute colors) can provide invalu-
able constraints on the formation processes for ellipticals.
They have particular utility for what they can tell us about
the role of gaseous interactions and star formation. The lu-
minosity dependence of color gradients is a good discrimi-
nant among various models of galaxy formation. If galaxies
were formed purely by dissipation, the most massive galaxies
would have the largest color gradients (Carlberg 1984).
Mergers on the other hand cause initial color gradients to
decrease (e.g., White 1979). Thus, the luminosity depen-
dence may provide clues as to the importance and frequency
of mergers and/or accretions. The number of mergers which
a galaxy has undergone would be expected to increase with
luminosity, leading one to expect color gradients to diminish
with increasing luminosity.

There is also no indication that galaxies change shape with
photometric passband. There are no consistent, large-scale
differences in the ellipticity profiles. The ellipticity profiles
overlap in the different colors, except in the cases where dust
is present. In such cases the dust usually manifests itself as
rather irregular differences in the color ellipticity profiles,
and in the 36 and 46 terms. This is also true of the noisier U-
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FIG. 12. Global parameters against color gradients. (v/0)* is plotted against the color gradientsin B — R in (a), and against the U — R gradient in (b). These
figures show that there is no strong relation between the color gradient and the total amount of rotational support. The same color gradients have been plotted
against total blue luminosity in (c¢) and (d). The data from this paper and Davis et al. (1985) are plotted with filled symbols. Dusty galaxies are indicated by
triangles, while the brightest galaxies (including cD’s) are shown as pentagons, and the remainder as squares. The data from Vader eral. (1988) are shown as
open squares, and the Franx, Illingworth, and Heckman (1989b) data as crosses.

band ellipticity profiles. The differences in NGC 4697 and
5845 can be explained by dust absorption along the major
axis. This result makes it unlikely that elliptical galaxies
were formed in a simple one-stage dissipational collapse, be-
cause one should then see nontracking isophotes and isoch-
romes (Carlberg 1984). However, the ubiquity of color gra-
dients implies that dissipational collapse/accretion should
not be ignored.

We have plotted our gradients versus absolute magnitude
in Figs. 12(c) and 12(d), using the values tabulated in Ta-
bles IV and VI. We have included the cD and first-ranked
galaxies, as well as the galaxies with dust. They are distin-
guished by different symbols. To these we have added the
data from Vader et al. and Franx, Illingworth, and Heckman
(1989b). The latter datasets have been transformed to the

Cousins  system, using the relations (B — R)c¢
=0.88(B—R); —0.04 and (U—R). =0.94(U— R);
— 0.07, from Paper 1.

From Fig. 12 we conclude the following:

(a) The three datasets are consistent, although Vader et
al. have some galaxies in their sample with very large B — R
gradients.

(b) There is large, intrinsic scatter in the amplitude of the
color gradients at all luminosities, with the possible excep-
tion of the highest and the lowest.

(c) There is no significant relation between color gradient
and luminosity, nor is there a relation between color gradient
and (v/o)* [cf. Vader et al. (1988) and Kormendy and
Djorgovski (1989) for an alternative view].

(d) The lowest luminosity galaxies (Mp > — 19) have
small or zero gradients. They have boxy isophotes and are
rotationally flattened, and are the companions of giant ellip-
ticals. It appears that this group may be physically distinct
from the other galaxies and that their evolution may have
been strongly influenced by their massive neighbors.

(e) The brightest galaxies do not have significantly
smaller color gradients, unlike that expected if larger galax-
ies were the debris of repeated mergers of smaller galaxies.

With the possible exception of the lowest-luminosity gal-
axies, the correlation of gradient with luminosity is distin-
guished by its lack of any clear trend. While observational
uncertainty could mask any such relation for B — R, this is
less likely to be the case for the U — R data for which the
gradients are significantly larger. Given that there is a trend
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of color with luminosity, and that color gradients are ubiqui-
tous, it is noteworthy that color gradients themselves do not
vary systematically with luminosity.

¢) Other Relations

Position angle twisting appears to depend only upon the
intrinsic orientation of the galaxy, and not on luminosity or
any other parameters. In Fig. 13 we have plotted the amount
of position angle twist per dex in radius against ellipticity at
r./2 for all galaxies except the brightest cluster galaxies and
the cD’s. We see clearly that position angle twists are larger
for round galaxies. This is what one would expect for triaxial
galaxies. If position angle twists were mainly caused by tidal
interactions flattened galaxies would also have rather large
position angle twists.

As was seen in Djorgovski’s (1985) thesis data, both ellip-
ticity and the major-axis position angle vary a lot with radi-
us. An extreme example is NGC 1129, for which we have
measured a position angle twist of almost 90°. Such large
twists, while rare, are possible for projected triaxial figures
for special viewing orientations. In general galaxies become
rounder at smaller radii, even accounting for the effect of
seeing. However, the sharp drop towards the center that is
seen, e.g., in NGC 4697 and NGC 3377, can be explained
entirely by seeing, indicating that it is certainly possible for a
galaxy to have very elongated isophotes close to the center.

VII. CONCLUSIONS

With the advent of wide dynamic range, linear detectors,
surface photometry is beginning to play an important role in
delineating the properties of ellipticals. This is particularly
true of multicolor surface photometry from which color gra-
dients and maps can be derived. These data have particular
relevance for formation models which involve gaseous pro-
cesses.

The highlights of this program are:

(a) Multicolor UBR CCD images have been obtained for
39 elliptical galaxies, ranging in luminosity from M ~ — 18
to some of the brightest cD galaxies. The use of a small tele-
scope proved valuable in obtaining a good compromise
between scale and field, enabling us to derive results at sever-
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FI1G. 13. Absolute position angle twist against ellipticity at r,/2, showing
that large position angle twists are not seen in flattened galaxies.
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al arcseconds while still being able to determine the sky satis-
factorily. The U data have proven particularly valuable for
determining color gradients. The large amplitudes for the
U — R gradients, compared to B — R gradients, gives us
greater confidence in the reality of color gradients in ellipti-
cals. Color gradients, particularly in B — ¥V and B — R, are
still not well determined, as indicated by the disagreement
between different authors. The derivation of higher-order
residuals from ellipses has proven valuable, as shown by oth-
er authors. We show that it is important to use terms other
than the cos 46 residuals used by others.

(b) While not an unbiased sample, it is large enough that
some general statements would not be inappropriate.

(1) In general, elliptical galaxies show color gradients in
both U—R and B— R, with those in U— R being
2.2 X larger, in the mean than those in B — R. The gradients
are always negative, except for a few cases where they are
consistent with zero, i.e., the center is always redder than the
outer parts. The mean logarithmic gradient in U — R is
A(U—R)/Alogr,is — 0.20 + 0.02 mag per dex in radius,
while thatin B — Ris — 0.09 + 0.02 mag per dex in radius.

(2) U — R gradients correlate with those in B — R. The
mean of the ratio of the gradients in U— R and B — R is
consistent with a decreasing metallicity profile, with a
change of metallicity of A[Fe/H] of 0.20 per dex in radius.

(3) There is virtually no correlation between absolute
magnitude and color gradient, with the possible exception of
smaller gradients in the lowest luminosity ellipticals. The
scatter at any luminosity is intrinsic, being greater than the
observational uncertainty, particularly in U — R.

(4) Some ellipticals have ellipticity profiles that are con-
sistent with being quite flattened at small radii, i.e., at radii of
the order of 1-200 pc (less than a few arcseconds, typically).
This effect is often masked by seeing which can effect ellipti-
city profiles out to large radii (5-10 seeing radii).

(5) Dust is common in ellipticals, and may explain some
of the reddening in the centers of ellipticals, but not all since
line strength gradients provide strong evidence for metalli-
city changes.

(6) Ellipticity, position angle and the higher-order terms
show no color dependence, except when the complicating
effect of dust is present. While the sensitivity to differences is
low, there is no evidence for isochromes to be more flattened
than isophotes. -

(7) Elliptical galaxies have elliptical isophotes, with the
high-order (third- and fourth-order Fourier components)
residuals usually not exceeding 1% in amplitude. More typi-
cal values are 0.5%, with fourth-order component occurring
more commonly. Occasional galaxies, particularly dusty
ones, have larger residuals. The more common form for the
residuals is a box-shaped distortion characterized by a nega-
tive cos 46 residual, or alternatively by a fourth-order maxi-
mum phase shifted by 45° from the major axis. This appears
to be particularly common among low-luminosity ellipti-
cals.

(8) We confirm that galaxies with disk-like distortions,
i.e., positive cos 48 residuals, or alternatively fourth-order
maxima aligned with the major axis show strong rotation
and are not strong radio sources. We note that such relations
could be biased by the preferential detection of the weak, but
rapidly rotating disk component in those galaxies with disk-
like isophotes, and also by the enhancement of both the rota-
tion and the amplitude of the high-order terms in edge-on
galaxies.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1990AJ....100.1091P

rT990AJ.~ - ZI00: I091P

1116 PELETIER ET AL.: UBR PHOTOMETRY OF GALAXIES

(9) We suggest that the low-luminosity ellipticals that are
companions to giant elliptical galaxies may form a physical-
ly distinct group. They appear to have small or zero color
gradients, boxy isophotes and rotation velocities sufficient to
account for their flattening. This combination of properties
distinguishes them from other ellipticals. Perhaps their evo-
Iution has been strongly influenced by the presence of their
massive neighbor.
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APPENDIX A: NOTES ON THE INDIVIDUAL GALAXIES

NGC 315, A bright star at 200" NW of the galaxy caused a
gradient in the background across the frame. The galaxy was
offset from the center of the frame so that the star itself did
not fall on the frame. A model of the stellar profile of the
form I(r) = I,(r/r,) ~ "> was subtracted in B and R.

NGC 720. This galaxy is quite isolated. We have data from
October 1982 only. This run generated less reliable data than
those of January 1984 and April 1984. The shape parameters
were kept constant for 7> 100" to allow accurate determina-
tion of the luminosity profile.

NGC 741. The data for this galaxy consists of KPNO data
in R and U, and B and R frames from the 1.54 m ESO tele-
scope at La Silla, Chile. The ESO data had considerably
better seeing, so that there is a large seeing difference
between U on one hand and B and R on the other hand. A
star at 9” N of the core was masked out, as was NGC 742, a
companion galaxy 50" to the north.

NGC 1052. We used the same data from October 1982 as
was used in Paper I. The 36 and 46 terms show considerable
structure inside 20”; this probably results from the dust pres-
ent in this galaxy (see, e.g., the detailed study by Davies and
Illingworth 1986).

NGC 1129 (AWMY7). This is a very luminous galaxy in a
small group. Four companion galaxies in a chain to the south
from 25" to 50" were masked out causing the galaxy profile
to be noisier in this radius range. The large position angle
twist is discussed in Sec. V [see Figs. 9 and 14(a)].

NGC 1600. The brightest galaxy in a group. Our KPNO
data are of poor quality; the central regions were reobserved
at ESO in B and R in December 1986, with seeing of 1.2".
The internal consistency between both datasets is good.

Abell 496, A 5% E-W gradient was subtracted from this
galaxy in B and R before analysis. The quality of the data for
this galaxy is poor despite the long integration times; the sky
is probably uncertain by 2%. The U data is of particularly
poor quality as the only frames we have are from the 0.9 m.
The R and B frames were taken in cloudy conditions. All the
companion galaxies of the central galaxy have been masked
out.

NGC 2300. Poor seeing has smoothed out the inner pro-
file. This galaxy is near the north pole so the poor image
quality could be partly due to the large zenith distance. The
galaxy has a lot of structure in the third- and fourth-order
terms, probably because of the presence of dust. A “bump”
between 20” and 60" in both the position angle and C4 pro-
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b)

FIG. 14. A grey-scale image of the inner parts of NGC 1129, a galaxy
with a position angle twist of almost 90°, is shown in (a). In (b) a
difference image for NGC 4697 shows the “disk-like” structure on the
major axis. A model of the galaxy, based on the surface photometry,
with the assumption that NGC 4697 can be represented by ellipses,
has been subtracted from the data frame, leaving the third- and
fourth-order residual structure. The galaxy isophotes have been over-
laid.

files is suggestive of a possible additional “disk component”
in the galaxy.

NGC 2768. This galaxy is very flattened in its outer parts,
with the ellipticity rising steadily from the center. The power
in the C4 term, in particular, suggests that there may be a
disk-like component around 50”. The galaxy contains a con-
siderable amount of dust (Ebneter and Balick 1985). The
seeing for this galaxy was estimated from other frames taken
on the same night.

NGC 2778. NGC 2779 has been masked out of the frames
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used. The signal-to-noise ratio has been greatly improved by
the large number of galaxy frames used.

NGC 2832. This is the brightest galaxy in Abell 779. One
close companion galaxy at 23” N has been masked out, as
has a disk galaxy at 80" N. The S3 and S4 terms appear to be
significant between 10”-20".

NGC 3377. Determination of the sky was a problem since
this large galaxy was only observed with the 2.1 m telescope.
The sky was estimated from the corners of the frame, since
the galaxy is quite elongated. The galaxy has a disk on the
major axis, which is significant up to =~ 30", and is boxy at
radii larger than 40”. The luminosity profile changes slope at
the position where the galaxy changes from ‘“‘disk-like” to
“boxy.” To see whether the isophotes in the inner 40" were
boxy as well (in addition to the presence of a disk ) we looked
at the higher-order terms determined after having masked
out the disk. They were around zero, which means that this
galaxy has elliptical isophotes in the inner regions in addi-
tion to a disk and that the isophotes only become boxy after
the disk has stopped.

NGC3379. This galaxy was discussed extensively in paper
I. We used the same data here, adding U data from April
1984. Although the amplitudes of the fourth-order terms are
small, they are very significant. The deviations from ellipti-
cal isophotes are between disk-like and box-like, making the
galaxy look like a diamond.

NGC 3605. This is a small galaxy close to NGC 3607. It
was necessary to model NGC 3607 in U, B, and R and to
subtract the models from the frames. The sky determination
came from the 0.9 m frames. The isophotes are “boxy” at
radii less than 20", typical for the small companions of
bright ellipticals.

NGC 3665. The strange behavior of the profiles around
10” results from the sharp dust lane or ring,which is shown
in Kotanyi (1979). Except for this feature, presumably re-
sponsible for its large IRAS flux, the galaxy looks normal.

NGC 3801. This galaxy is very dusty, with multiple dust
lanes that have greatly affected the various profiles. It also
has a very large color gradient in U — R and in B — R, pre-
sumably because of the dust. Note that the amplitude scale
for the third- and fourth-order terms has been changed to

+ 0.10 in Fig. 15.

NGC 4261. This galaxy rotates about its major axis (Da-
vies and Birkinshaw 1986). It also is the most “boxy” galaxy
in this sample, with the largest amplitude for the C4 term,
except for those galaxies with prominent dust lanes. Al-
though our profiles agree very well with Bender and Mollen-
hoff (1987), we were not able to see the dust lane noted by
them. The differences between their ellipticity profiles in the
three bands suggest that their “dust lane” could have result-
ed from dividing two frames with nonzero ellipticity and
different seeing. Kormendy and Stauffer (1987) noted an
almost round patch of dust; our seeing is not good enough to
confirm this.

NGC4278. A relatively small galaxy containing dust (Eb-
neter and Balick 1985), and with alarge amount of H 1 (Rai-
mond et al. 1981). The companion to the NE was masked
out.

NGC 4374. This large galaxy filled the CCD frame and
since it is round in the outer parts the sky was difficult to
determine and is uncertain. Note that there are considerable
amounts of dust in the central regions (see, e.g., Hansen et
al. 1984), which affected all profiles. From the fourth-order
term, we conclude that NGC 4374 is slightly boxy between
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10" and 50”. The seeing in U was much worse than the seeing
in B and R. The ellipticity profile is somewhat unusual in
that it decreases monotonically outwards.

NGC 4387. This galaxy has very “boxy” isophotes, with-
out any evidence for dust.

NGC 4406. Again the galaxy completely fills the CCD
frame so the sky level is uncertain. NGC 4406 is also a mi-
nor-axis rotator, like NGC 4261 (Bender 1988; Illingworth
and Franx 1988; Franx, Illingworth, and Heckman 1989a),
but with a kinematically distinct core rotating around the
minor axis. Apparently the core and the main body of the
galaxy are decoupled. Interestingly, the isophotes are
“boxy” outside the core, just like NGC 4261.

NGC 4472. This very large elliptical, the brightest in Vir-
go, was offset on the 0.9 m frame to provide a better estimate
of the sky. The galaxy is slightly boxy. This galaxy is rotating
slowly around its minor axis, except within the core inside
5", where it does not rotate (Franx, Illingworth, and Heck-
man 1989a).

NGC4478. A low-luminosity elliptical. A small NS gradi-
entin the background onthe Band R frames taken on the 0.9
m telescope was modeled and removed. The quality of the
data is good since 2.1 m data was also available. This low-
luminosity elliptical shows interesting structure from
r=~10"-50", with significant fourth-order terms peaking
around 23", outside which the position angle changes drasti-
cally. This galaxy, a companion to NGC 4486, has very
small color gradients.

NGC 4486. This galaxy has been discussed in Paper I. The
U — R profile flattens in the center, as the bluer nuclear
component begins to contribute. This is the roundest galaxy
in the sample, and is truly elliptical, since it is one of the only
three galaxies in this sample with higher-order terms that are
consistent with zero. Since the ellipticity close to the center is
very low, the accuracy of the position angle determination is
reduced significantly, especially in U.

NGC 4551. A low-luminosity elliptical. Neither the 0.9
nor the 2.1 m data shows a color gradient in this galaxy. The
isophotes are “boxy” between 5”—15". A spiral companion,
NGC 4550, was masked out.

NGC 4636. This galaxy is large and the radius at which
the galaxy is only 5% of the night sky surface brightness was
not reached. Although very similar to NGC 4649, its iso-
photes are very elliptical.

NGC 4649. A spiral galaxy, NGC 4647, was masked out
in one of the corners. The galaxy is “boxy” from ~ 10" out-
wards. Its kinematics are regular for a galaxy of this type; it
appears not to have a decoupled core (Franx, Illingworth,
and Heckman 1989a).

NGC 4697. The galaxy was offset to the north to allow
determination of the sky background. NGC 4697 has a very
large C4 term, which has a form similar to the ellipticity
profile. This indicates that NGC 4697 has a strong major-
axis disk. We verified this by subtracting a smooth model
fromthe R frame. Thisisshown in Fig. 14(b). There are also
indications of unusual structure in the outer regions (cf.
NGC 3377).

NGC 4874, This elliptical is one of the two brightest in the
Coma cluster. The data is of rather poor quality, due to its
low surface brightness. A large number of companion galax-
ies have been removed, making the higher-order terms diffi-
cult to interpret.

NGC 4889, The other central galaxy in Coma. Again a
large number of companion galaxies have been masked out.
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NGC 5638. We only have 2.1 m data for this galaxy. An
unexpected problem with the data in U caused us to delete a
large fraction ( =~40%) of the pixels from this frame, so the
U results are less than optimum. As a result only the inner
parts of the U — R color profile are shown and the ellipticity
and position angle profiles in U are omitted. It is one of the
roundest ellipticals in our sample, and shows no significant
higher-order structure.

NGC 5813. This galaxy has been studied previously by
Efstathiou, Ellis, and Carter (1982). Kormendy (1984) ar-
gued that the unusual kinematic and structural character of
the core was the result of the accretion of a smaller galaxy by
NGC 5813. There appear to be no large-scale structural fea-
tures resulting from that accretion, except for some dust in
the nuclear regions. A N-S gradient in the background on
the Band R frames was modeled and removed from the 0.9
m telescope frames. It is interesting that while the color gra-
dients are so small, and are consistent between 0.9 and 2.1 m,
NGC 5813 has a very steep Mg, gradient (Gorgas and Ef-
stathiou 1987). This discrepancy is probably not due to dust.
This unusual characteristic is also discussed in Peletier
(1989). ~

NGC 5831. The ellipticity profile is somewhat unusual in
that it decreases beyond 8", making the NGC 5831 the only
galaxy in the sample with small high-order terms and a de-
creasing ellipticity. An isophote twist of >20° is seen
between radii of 10”"-25". A particularly interesting feature
of this galaxy is that the weak disk, initially along the major
axis, remains at a constant position angle, even as the major
axis skews (see Fig. 9).

NGC 5845. This very small galaxy has an effective radius
which is a factor 3 smaller than that of the next smallest
galaxy, as well as a very high central surface brightness.
There is a good indication of a disk, associated with some
dust on the major axis, between ~ 5" and 15”. The quality of
the data is good.

IC 1101. This is the cD galaxy in Abell 2029; the most
luminous galaxy in our sample, at a redshift z of almost
0.08.The photometry is a compilation of a large number of
frames, taken with both telescopes. The galaxy is a low sur-
face brightness object, as can be expected for a cD. Many
companion galaxies have been deleted. The ellipticity in-
creases very rapidly outward from the center. The nf terms
are uncertain, although the agreement between B and R is
good. Due to the lack of aperture photometry our absolute
calibration is uncertain in U.

NGC 6051 (AWM 4), The galaxy was offset to the W on
the frame to avoid a bright star. The data do not extend to
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very large radii, since only 2.1 m data were taken. A large
number of companion galaxies have been masked out.

NGC 6086. The central galaxy in Abell 2162. The frame
taken on the 2.1 m was positioned between two bright stars;
one at 42" to the SE and the other at 170" to the SW. Many
companion galaxies were masked out.

NGC 6269 (AWM 5). A highly luminous galaxy with data
from both telescopes. Many companion galaxies were
masked out.

NGC 7626. One of the two brightest ellipticals in the Pega-
sus I cluster—paired with the higher luminosity NGC 7619.
The only data for this galaxy were taken in the October 1982
run. It is not of the quality of the later data. Beyond 60" the
shape parameters in B have been kept constant. Although
the galaxy itself rotates quite slowly, its core rotates with an
amplitude of ~40 kms~' (Jedrzejewski and Schechter
1988). There is also shell structure to the east of the galaxy,
indicative of an interaction/acquisition.

APPENDIX B: FIGURES AND TABLES FOR INDIVIDUAL
GALAXIES

The surface brightness, color, ellipticity, and position an-
gle profiles, as well as the sin and cos 36 and 46 profiles,
resulting from the reduction, calibration and analysis de-
scribed in Secs. II-V are plotted in Fig. 15 for the 39 galaxies
studied in this program. The surface brightness, ellipticity,
position angle, and B — R and U — R color profile data are
also tabulated in Table IX. The seeing FWHM in arcseconds
and the sky background level in R mag arcsec ~? are shown
on the plots. The seeing FWHM in the three bands is given at
the top of each figure. The sky surface brightness in each
band is given in Table ITI. Error bars have not generally been
plotted since the major sources of error are systematic. For
the n8 terms where the systematic errors are probably not
dominant, an estimate of the uncertainty can be obtained
from the scatter of the points. For the color profiles where
the errors are systematic and probably comparable to the
size of the gradient in many cases (particularly B — R), we
give the uncertainty that results from a 1% error in the sky
level. Since the uncertainty from the sky is most likely highly
correlated between the different bands, these error bars rep-
resent upper limits to the actual uncertainty. They serve,
however, as a useful guide to the confidence level that one
can place on the results. )

We have not tabulated the 36 and 46 terms. If desired
these numbers can be obtained from the first author, either
in tabulated or in computer-readable form.
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