Recall eccentricity e defined by

$$
b^{2}=a^{2}\left(1-e^{2}\right) \quad a, b \begin{aligned}
& \text { seni-major } \\
& \text { semi-menon axes }
\end{aligned}
$$

So $e=0$ for a circular orbit.
Q Use the sheet of information to summarize: list planets in order of \rightarrow eccentricity of orbit
\rightarrow inclination to edyptec

Planetary Orbital and Satellite Data
$\left.\begin{array}{lcccccc}\text { Slanet } & \begin{array}{c}\text { Semimajor } \\ \text { Axis (AU) }\end{array} & \begin{array}{c}\text { Orbital } \\ \text { Eccentricity }\end{array} & \begin{array}{c}\text { Sidereal } \\ \text { Orbital } \\ \text { Period }(\mathrm{yr})\end{array} & \begin{array}{c}\text { Orbital } \\ \text { Inclination } \\ \text { to }\end{array} & \begin{array}{c}\text { Ecliptic }\left({ }^{\circ}\right)\end{array} & \begin{array}{c}\text { Equatorial } \\ \text { Inclination } \\ \text { to Orbit }\left({ }^{\circ}\right)\end{array}\end{array} \begin{array}{c}\text { Number } \\ \text { Natural } \\ \text { Satellites }\end{array}\right]$

Terrestrial planets
mass (in Earth masses)

Mercury	0.06	
Venus	0.82	
Earth	1	(moon $=0.01$)
Mans	0.11	

Mercury's orbit is the most elliptical, \& aligned at 7° t de edptic.

$$
\begin{aligned}
& \text { Peritation }=0.31 \mathrm{AC} \\
& \text { Aphelion }=0.47 \mathrm{ACl}
\end{aligned}
$$

The precession of Mercury's orbit was one of the first successes of Einstein's theory of general relativity.

Advance of Mercury's Perihelion

Perihelion advances 2° per century

According to Roy D. North, more precise numbers are as follows (in arcsec per Julian century):
total advance with
Index
5599 respect to to geocenter (our reference frame.) contribution of
5025 precession of Earth's equinoxes.
Classical or
531 Newtonian
contribution of the other planets.
General relativity
43 correction (modern theory: 42.98)

Greater perihelion advances with binary pulsars.

Go Back
http://hyperphysics.phy-astr.gsu.edu/hbase/relativ/grel.html\#c3
asteroids
\# Most asteroids orbit between Mans \& Jupiter's orbits. But two are known that travel at least as far out as Sativa's ort:

- 944 Hidalgo: eccentric orbit from Faust past Mars to rear Saturn about to km across ; exteicht comet? (dis c.1920)
- 2060 Chiron : orbit ranges from just inside Saturn to near Uranus. (disc. 1977) w/80 kn across Both orbits are inclined to ecliptic

7.3 Asteroids

Asteroids are by far the most abundant named objects in the Solar System. Over one hundred thousand asteroids have been detected, with over thirty thousand having well determined orbits, most of these occupying the asteroid belt between about 2 and 4 AU from the Sun (between the orbits of Mars and Jupiter, Figure 7.7). The total mass of all the bodies in the current asteroid belt is only about one-thousandth of an Earth mass, although originally, a few Earth masses of material would have been available in the solar nebula in the region. In the 19th and early 20th centuries, astronomers thought that the asteroid belt represented fragments of a single planet which had somehow disintegrated catastrophically. However the asteroids are now thought to represent fragments of many small planetary bodies that never managed to accrete into one single body. This is due to the strong gravitational influence of the newly formed Jupiter 'stirring up' the asteroid population, causing collisions which would repeatedly break up the bodies and so impede the formation of one single large object.

Figure 7.7 (a) A representation of the asteroid belt. It is seen that the asteroid belt is actually a diffuse cloud, or swarm of orbiting bodies. (b) A crosssection through the belt, shown on the same scale. Each individual asteroid shown moves in an orbit inclined to the ecliptic plane, so that sometimes it is above it, and sometimes below. You can imagine that collisions between asteroids will be quite common.

Figure 7.9 The orbits of known Potentially Hazardous Asteroids (PHAs). The orbit of Earth is also shown.

The very fact that we see NEAs today means that the NEA population is being continually replenished, and this happens because of the orbital evolution of objects in the inner asteroid belt. The long-term gravitational effects of Jupiter (and even Mars) give rise to a slow 'conveyor belt', which delivers bodies to the inner Solar System (although you should also appreciate that it can be a two-way process bodies that are already in the inner Solar System can evolve outwards again). Some of the objects that make it into the inner Solar System might eventually hit one of the terrestrial planets.

In the minor planet center ammation, Q There seen to be more asteroids close to de Earl in its orbit than, say, 180° away. What do you therit causes this?

A It's hard to thicit of a physical reason for this, but easier to thine of a sociological one.

Human beings are concerned about a possible direct hit on the Earth by as la ge object. We search harder for objects whose orbit may cross the Earth's, and work harden to derive the orbit of such objects. His causes an artificial enhancement on the maps, which are only, of course, of known objects.

It is relatively sample to derive the orbit of an extrasolar planet lance the observations are accurate enough) But calculating the orbit of a newly discovered asteroid is Tougher. Generally they are to faint to obtain velocities, so the data are simply a number of positions in The sky with times of observation.

Q How do you chit astronomers actually calculate (estimate) the orbit of a new asteroid?

Figure 7.10 The cumulative size distribution of the known bodies in the asteroid belt, plotted logarithmically. The graph tells us the number of asteroids that have diameters greater than a given value.

Q Why are there so many more small asteroids?

Orbital resonances with Jupiter

The asteroids are not evenly distributed between Mans and Jupiter : There are distinct gaps called the Kirkwood gaps. These are at places where orbital periods are at simple ratios with Jupiter, such as $3: 1,2: 1$. Since Jupiter is alevays in the same place every and on Ind orbit, its extra gravitational kick de-stabcluzes orbits there.

There are also places of unusual gravitational stability, and you see more asteroids there than expected. The Trojan asteroids are at the Lagrangian points $L_{4} \& L_{5} \ldots \ldots$ these describe positions in the restricted 3-body problem that are very stable.

FIGURE 22.13 The distribution of 1796 asteroids in the asteroid belt. Asteroid group names and orbital resonances with Jupiter are also shown. Kirkwood gaps are evident at numerous resonance locations, and enhancements in the number of asteroids are apparent at other resonance locations. (Data from Williams, Asteroids II, Binzel, Gehrels, and Matthews (eds.), University of Arizona Press, Tucson, 1989.)

FIGURE 22.15 Trojan asteroids are located in Jupiter's orbit, either leading or trailing the planet by 60°. The occupied positions are two of the five Lagrangian points in the Sun-Jupiter system.

FIGURE 18.2 The effective gravitational potential Φ for two stars of mass $M_{1}=0.85 \mathrm{M}_{\odot}, M_{2}=$ $0.17 \mathrm{M}_{\odot}$ on the x-axis. The stars are separated by a distance $a=5 \times 10^{8} \mathrm{~m}=0.718 \mathrm{R}_{\odot}$, with their center of mass located at the origin. The x-axis is in units of a, and Φ is expressed in units of $G\left(M_{1}+M_{2}\right) / a=2.71 \times 10^{11} \mathrm{~J} \mathrm{~kg}^{-1}$. (In fact, the figure is the same for any $M_{2} / M_{1}=0.2$.) The dashed line is the value of Φ at the inner Lagrangian point. If the total energy per unit mass of a particle exceeds this value of Φ, it can flow through the inner Lagrangian point between the two stars.

FIGURE 18.3 Equipotentials for $M_{1}=0.85 \mathrm{M}_{\odot}, M_{2}=0.17 \mathrm{M}_{\odot}$, and $a=5 \times 10^{8} \mathrm{~m}=0.718 \mathrm{R}_{\odot}$. The axes are in units of a, with the system's center of mass (the " \times ") at the origin. Starting at the top of the figure and moving down toward the center of mass, the values of Φ in units of $G\left(M_{1}+M_{2}\right) / a=$ $2.71 \times 10^{11} \mathrm{~J} \mathrm{~kg}^{-1}$ for the equipotential curves are $\Phi=-1.875,-1.768,-1.583,-1.583,-1.768$ (the "dumbbell"), -1.875 (the Roche lobe), and -3 (the spheres). L_{4} and L_{5} are local maxima, with $\Phi=-1.431$.

