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2.1 Elliptical Orbits 25 

FIGURE 2.2 Kepler's second law states that the area swept out by a line between a planet and the 
focus of an ellipse is always the same for a given time interval, regardless of the planet's position in 
its orbit. The dots are evenly spaced in time. 

Kepler's first and second laws are illustrated in Fig. 2.2, where each dot on the ellipse 
represents the position of the planet during evenly spaced time intervals. 

Kepler's third law was published ten years later in the book Harmonica Mundi (The 
Harmony of the World). His final law relates the average orbital distance of a planet from 
the Sun to its sidereal period: 

Kepler's Third Law The Harmonic Law. 

where P is the orbital period of the planet, measured in years, and a is the average distance 
of the planet from the Sun, in astronomical units, or AU. An astronomical unit is, by 
definition, the average distance between Earth and the Sun, 1.496 x 1011 m. The graph of 
Kepler's third law shown in Fig. 2.3 was prepared using data for each planet in our Solar 
System as given in Appendix C. 

In retrospect it is easy to understand why the assumption of uniform and circular motion 
first proposed nearly 2000 years earlier was not determined to be wrong much sooner; 
in most cases, planetary motion differs little from purely circular motion. In fact, it was 
actually fortuitous that Kepler chose to focus on Mars, since the data for that planet were 
particularly good and Mars deviates from circular motion more than most of the others. 

The Geometry of Elliptical Motion 

To appreciate the significance of Kepler's laws, we must first understand the nature of the 
ellipse. An ellipse (see Fig. 2.4) is defined by that set of points that satisfies the equation 

r + r' = 2a, (2.1) 
, . 

where a is a constant known as the semimajor axis (half the length of the long, or major ·:1..;' 
, ~axis of the ellipse), and rand r' represent the distances to the ellipse from the two focal 
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FIGURE 9.7 Three orbits, with the same 
semimajor axis but different eccentricities, 
have the same amount of orbital energy. -

FIGURE 9.S Closed orbits are · in the shape 
of ellipses; as the energy increases, the orbit 
stretches out towards infinity until the orbit is 
a parabola and the body escapes. 
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2.3 Kepler's Laws Derived 43 
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FIGURE 2.12 A binary orbit may be reduced to the equivalent problem of calculating the motion 
of the reduced mass, JL, about the total mass, M, located at tbe origin. 

becomes 

L = f.J.,r x v = r x p, (2.26) 

where p == f.J.,v. The total orbital angular momentum equals the angular momentum of the 
reduced mass only. In general, the two-body problem may be treated as an equivalent one­
body problem with the reduced mass f.J., moving about a fixed mass M at a distance r (see 
Fig. 2.12). 

The Derivation of Kepler's First law 

To obtain Kepler's laws, we begin by considering the effect of gravitation on the orbital 
angular momentum of a planet. Using center-of-mass coordinates and evaluating the time 
derivative of the orbital angular momentum of the reduced mass (Eq. 2.26) give 

dL dr dp- = - x p + r x - = v x p + r x F,
dt dt dt 

the second expression arising from the definition of velocity and Newton's second law. 
Notice that because v and p are in the same direction, their cross product is identically zero. 
Similarly, since F is a central force directed inward along r, the cross product of rand F is 
also zero. The result is an important general statement concerning angular momentum: 

dL 
-=0 (2.27) 
dt ' 

the angular momentum of a system is a constant for a central force law. Equation (2.26) 
further shows that the position vector r is always perpendicular to the constant angular 
momentum vector L, meaning that the orbit of the reduced mass lies in a plane perpendicular 
to L. 

Using the radial unit vector r (so r = rr), we can write the angular momentum vector 
in an alternative form as 

L = f.J.,r x v 

~ d ~ =Jur x - (rr)
dt 
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FIGURE 2.11 The center-of-mass reference frame for a binary orbit, with the center of mass fixed 
at the origin of the coordinate system. 

Next, define the reduced mass to be 

mlm2 
(2.22) J.L -= . 

ml +m2 

Then rl and r 2 become 

J.L
r2 = -r. 

m2 

(2.23) 

(2.24) 

The convenience of the center-of-mass reference frame becomes evident when the total 
energy and orbital angular momentum of the system are considered. Including the necessary 
kinetic energy and gravitational potential energy terms , the total energy may be expressed 
as 

Substituting the relations for rt and r2, along with the expression for the total mass of the 
system and the definition for the reduced mass, gives 

1 2 MJ.LE = -/IV - G- (2.25)21"" r ' 

where v = Ivl and v -= dr/dt. We have also used the notation r = Ir2 - rll . The total 
energy of the system is equal to the kinetic energy of the reduced mass, plus the potential 
energy of the reduced mass moving about a mass M, assumed to be located and fixed at 
the origin. The distance between J.L and M is equal to the separation between the objects of 
masses ml and m2. 

Similarly, the total orbital angular momentum, 




