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2.1 Elliptical Orbits 25

FIGURE 2.2 Kepler’s second law states that the area swept out by a line between a planet and the
focus of an ellipse is always the same for a given time interval, regardless of the planet’s position in
its orbit. The dots are evenly spaced in time.

Kepler’s first and second laws are illustrated in Fig. 2.2, where each dot on the ellipse
represents the position of the planet during evenly spaced time intervals.

Kepler’s third law was published ten years later in the book Harmonica Mundi (The
Harmony of the World). His final law relates the average orbital distance of a planet from
the Sun to its sidereal period:

Kepler’s Third Law The Harmonic Law.

P2=a3

where P is the orbital period of the planet, measured in years, and a is the average distance
of the planet from the Sun, in astronomical units, or AU. An astronomical unit is, by
definition, the average distance between Earth and the Sun, 1.496 x 10!! m. The graph of
Kepler’s third law shown in Fig. 2.3 was prepared using data for each planet in our Solar
System as given in Appendix C.

In retrospect it is easy to understand why the assumption of uniform and circular motion
first proposed nearly 2000 years earlier was not determined to be wrong much sooner;
in most cases, planetary motion differs little from purely circular motion. In fact, it was
actually fortuitous that Kepler chose to focus on Mars, since the data for that planet were
particularly good and Mars deviates from circular motion more than most of the others.

The Geometry of Elliptical Motion

To appreciate the significance of Kepler’s laws, we must first understand the nature of the
ellipse. An ellipse (see Fig. 2.4) is defined by that set of points that satisfies the equation

r+r' =2a, 2.1)

where a is a constant known as the semimajor axis (half the length of the long, or major
axis of the ellipse), and r and r’ represent the distances to the ellipse from the two focal
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FIGURE 9.7 Three orbits, with the same
semimajor axis but different eccentricities,
have the same amount of orbital energy.

FIGURE 9.8 Closed orbits are in the shape
of ellipses; as the energy increases, the orbit
stretches out towards infinity until the orbit is
a parabola and the body escapes.
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2.3 Kepler's Laws Derived

X

FIGURE 2.12 A binary orbit may be reduced to the equivalent problem of calculating the motion
of the reduced mass, p, about the total mass, M, located at the origin.

becomes

L=urxv=rxp, (2.26)

where p = wv. The total orbital angular momentum equals the angular momentum of the
reduced mass only. In general, the two-body problem may be treated as an equivalent one-

body problem with the reduced mass . moving about a fixed mass M at a distance r (see
Fig. 2.12).

The Derivation of Kepler’s First Law

To obtain Kepler’s laws, we begin by considering the effect of gravitation on the orbital
angular momentum of a planet. Using center-of-mass coordinates and evaluating the time
derivative of the orbital angular momentum of the reduced mass (Eq. 2.26) give

dL dr dp

— =—Xp+rx —=vxp+rxFk

i —ar P d P
the second expression arising from the definition of velocity and Newton’s second law.
Notice that because v and p are in the same direction, their cross product is identically zero.
Similarly, since F is a central force directed inward along r, the cross product of r and F is
also zero. The result is an important general statement concerning angular momentum:

dL
=0 2.
dt ’ (2.27)

the angular momentum of a system is a constant for a central force law. Equation (2.26)
further shows that the position vector r is always perpendicular to the constant angular

momentum vector L, meaning that the orbit of the reduced mass lies in a plane perpendicular
to L.

Using the radial unit vector T (so r = rf), we can write the angular momentum vector
in an alternative form as

L=purxv

. da
= urr X — (rr
7 dt()



Chapter 2 Celestial Mechanics

X

FIGURE 2.11 The center-of-mass reference frame for a binary orbit, with the center of mass fixed
at the origin of the coordinate system.

Next, define the reduced mass to be

Then r; and r; become

The convenience of the center-of-mass reference frame becomes evident when the total
energy and orbital angular momentum of the system are considered. Including the necessary
kinetic energy and gravitational potential energy terms, the total energy may be expressed
as

mymy

1 1
E = —my (v [P+ Smgwt — G2
2m1| 1 5 2 [va| T

Substituting the relations for r; and r;, along with the expression for the total mass of the
system and the definition for the reduced mass, gives

1 ., Mu
E = e G o (2.25)
where v = |v| and v = dr/dt. We have also used the notation r = |r, — r;|. The total
energy of the system is equal to the kinetic energy of the reduced mass, plus the potential
energy of the reduced mass moving about a mass M, assumed to be located and fixed at
the origin. The distance between w and M is equal to the separation between the objects of
masses m, and m;.

Similarly, the total orbital angular momentum,

L= mry X Vy +mar; X v






