GALAXY SPECTRA

Recall the appearance, stellar populations \& colons of galaxies along the Hubble sequence.

Q What would the spectrum of an elliptical galaxy look like? An $s \varnothing$?
Q) One of my research projects is to look for K giants in the milts Way halo. One of the contaminants in the survey is distant, unresolved elliptical galaxies. How will their spectra differ from K girts?

Figure I.I Optical spectra of main-sequence stars with roughly the solar chemical composition. From the top in order of increasing surface temperature, the stars have spectral classes M5, K0, G2, A1, and O5-G. Jacoby et al., spectral library.

The temperatures of O stars exceed 30000 K . Figure 1.1 shows that the strongest lines are those of HeII (once-ionized helium) and CIII (twice-ionized carbon); the Balmer lines of hydrogen are relatively weak because hydrogen is almost totally ionized. The spectra of B stars, which are cooler, have stronger hydrogen lines, together with lines of neutral helium, HeI. The A stars, with temperatures below 11000 K , are cool enough that the hydrogen in their atmospheres

Figure 6.17 Spectrum of an elliptical galaxy; compare with the in Figure 1.1, and those of disk galaxies in Figure 5.24 - A. Kir

Further reading: Sections 3.3, 3.4, and 4.3 of J. Binney \& S. 1 tic Dynamics (Princeton University Press, Princeton, Nev 1990, Does God Play Dice? The Mathematics of Chaos (I Massachusetts) is written for the general reader, but it give nathematical chaos.

6.3 Stellar populations and ga

Jnlike spiral and irregular galaxies, elliptical galaxies co rous blue stars; the brightest stars are red giants, and stars ranch (AGB: see Section 1.1). We cannot see individual s. \qquad nore distant than about 20 Mpc ; even in the closest ellipticals, we are limited o the AGB stars and those near the tip of the red giant branch. The integrated pectra of ellipticals, such as that in Figure 6.17, show deep absorption lines of eavy elements such as calcium and magnesium, similar to the K star spectrum

Q What will the spectrum of a spiral look like? an $s \phi$?

Figure 5.24 Spectra of galaxies from ultraviolet to near-infrared wavelengths; incompletely removed emission lines from the night sky are marked. From below: a red S0 spectrum; a bluer Sb galaxy; an Sc spectrum showing blue and near-ultraviolet light from hot young stars, and gas emission lines; a blue starburst galaxy, that has made many of its stars in the past $100 \mathrm{Myr}-\mathrm{A}$. Kinney.
be higher than in the late-type Sc galaxies, inviting the conclusion that early-type spirals are in general faster rotators. But the most luminous Sc galaxies are rare, and there is none close to the Milky Way. Later surveys further afield revealed very luminous and rapidly rotating Sc galaxies: $V_{\max }$ depends mainly on luminosity, through the Tully-Fisher relation.

