The Moon

Topographic map from Lunar Reconnaissance Orbiter

Basic data

Radius 0.27 of Earth's
Mass 0.01 of Earth's

Orbits Earth with period 27.3 days
Revolves on its axis with this period: tidally locked so one face always points towards the Earth
Orbital eccentricity 0.05, inclined 5 deg to ecliptic

Surface and interior

Many craters, also dark patches
called maria, which are mostly on the near side

The far side shows highlands
Maria are filled with (denser) basaltic rock while highlands are composed of less dense rock called gabbro

Moon has much smaller core than Earth; crust thicker on far side

Figure 19.16 The interior structure of the Moon.

Composition of moon rocks is very similar to that of rocks on Earth (similar origin?)
Moon's crust has few volatile elements, unlike Earth - at one stage it must have been hot enough for long enough for volatiles to be boiled off

Origin of the Moon via giant impact

Canup (2004) made high-resolution simulations of the origin of the Moon via the impact of a Marssized object on the Earth, towards the end of the period when the Earth grew in mass by accretion of planetismals.
Impact velocity ~9 km/s
Impactor's iron core is mostly re-accreted by Earth
Material from mantle orbits Earth and accretes to form the Moon

 Earh Circles refresert dish petides and thair sizce ace proporconel bote physical siaes of the disk partickes. The hormona scale

Late stages of formation, not shown in Canup simulations: debris accretes to form larger object plus a transient ring

Timing of Earth and Moon formation

Figure 2.20 The timing of the formation of Earth and the Moon, based upon available chronological data, and indicating major planetary-forming and differentiation events.

Heating and cooling

Q: What are the sources of heat in a planet or moon?

Heating and cooling

Q: What are the sources of heat in a planet or moon?
A: Accretion/impacts (potential energy)
Radioactivity
Tidal forces

Tidal forces can be neglected for the Moon compared to the other two (but not for lo!)
Because of the Moon's small core, it will have less radioactive heat source than an object with a larger core (eg Mercury)

Heating and Cooling

While heat production will depend on a planet/moon's volume (so go as R^{3}), cooling will depend on its surface area (proportional to R^{2})
So large planets will cool more slowly than small ones

So we would expect to find more tectonic activity on large planets than, say, the Moon

