Orbits and Kepler's Laws

- Kepler's laws: apply to planets around the Sun, moons around planets, comets, binary stars
- The planets move in elliptical orbits with the Sun at one focus:
- Ellipticity (e): $b^{2}=a^{2}\left(1-e^{2}\right)$
- a is the semi-major axis
- b is the semi-minor axis

Orbits and Kepler's Laws

2. A line from the Sun to a planet sweeps out equal areas in equal times.

Orbits and Kepler's Laws

3. More distant planets orbit the Sun at slower average speeds, obeying a precise mathematical relationship.

- The Harmonic Law: $p^{2}=a^{3}$
- p is the planet's orbital period in years
- a is its average distance from the sun in Astronomical Units (AU)

Center of Mass

The Earth and the Sun both orbit around their common center of mass.
Putting the center of mass at the origin:

$$
\begin{gathered}
M R=-m r ; \\
\text { Reduced mass } \mu=\frac{m M}{m+M}
\end{gathered}
$$

Center of Mass

So a more correct statement of Kepler's first law is:
Each planet moves on an elliptical orbit with the center of mass at one focus.

Question:

The Sun has a mass of $2 \times 10^{30} \mathrm{~kg}$ and the Earth has a mass of $6 \times 10^{24} \mathrm{~kg}$.
$1 \mathrm{AU}=1.5 \times 10^{11} \mathrm{~m}$; The Sun's radius is $7 \times 10^{8} \mathrm{~m}$
Is the Sun-Earth's center of mass inside the Sun or outside?

Question:

Prove Kepler's second law, using conservation of angular momentum.
 (Use a circular orbit for simplicity)

- Hint: draw a diagram
- Hint: What area is swept out in time dt?
- Hint: Angular momentum $L=\vec{r} \times \vec{p}$

In time dt , a planet moves an angle $\mathrm{d} \theta$ along its orbit.

Area of wedge is $\frac{1}{2} r \cdot r d \theta$

Distance moved $=v_{\theta} d t=r d \theta$

So area $=\frac{1}{2} r \cdot v_{\theta} d t$

Angular momentum: $\vec{L}=m \vec{r} \times \vec{v}$

$$
L=m r v_{\theta}
$$

Conservation of angular momentum at any point:

$$
m_{1} r_{1} v_{\theta_{1}}=m_{2} r_{2} v_{\theta_{2}}
$$

The planet's mass is unchanged, so:

$$
r_{1} v_{\theta_{1}}=r_{2} v_{2}
$$

In time t :

$$
\text { area }=\int_{0}^{t} \frac{1}{2} r v_{\theta} d t
$$

Since $r v_{\theta}$ doesn't change along the orbit, neither does the area.

So Kepler's second law is simply a statement that angular momentum is conserved in the Solar System

Energy of Orbits

Question:

What are the two major contributions to the Earth's orbital energy?

Energy of Orbits

Question:

What are the two major contributions to the Earth's orbital energy?

Answer:

Kinetic and potential energy

Kinetic energy:
 $$
K=\frac{1}{2} m v^{2}
$$

Gravitational Potential Energy:

- Since the gravitational force is a central force, energy is conserved and we can define potential energy.

Derive formula for gravitational p.e:

- What is the work involved in pushing a planet away from the Sun?

Using vector notation:

$$
\Delta U=\int_{\vec{r}_{i}}^{\vec{r}_{f}} \vec{F} \cdot d \vec{r}
$$

Using the gravitational force law and the fact that \vec{F} and \vec{r} are in the same direction:

$$
\Delta U=\int_{r_{i}}^{r_{f}} \frac{G M m}{r^{2}} d r
$$

$$
\text { Integrating: } U_{f}-U_{i}=-G M m\left(\frac{1}{r_{f}}-\frac{1}{r_{i}}\right)
$$

Pushing all the way to ∞ and defining $U(\infty)=0$

$$
U=-\frac{G M m}{r}
$$

Looking at an asteroid in orbit around the Sun:

$$
E_{\text {tot. }}=\frac{1}{2} M v_{\text {Sun }}^{2}+\frac{1}{2} M v_{\text {asteroid }}^{2}-\frac{G M m}{\left(r_{1}+r_{2}\right)}
$$

Define $r_{1}+r_{2}=r$
$v_{\text {asteroid }}=v$

Question:

We can ignore the term for the Sun's K.E. here. Why?

Answer:

$$
\text { Velocity }=\frac{2 \pi r}{p}
$$

P is the period (same for both)

$$
\begin{gathered}
\text { So } \frac{\text { K.E.(Sun })}{\text { K.E.(asteroid })}=\frac{M v_{\odot}^{2}}{m v^{2}} \\
\frac{v_{\odot}}{v}=\frac{r_{1}}{r_{2}} \& \frac{r_{1}}{r_{2}}=\frac{m}{M}(\text { center of mass })
\end{gathered}
$$

Therefore $\frac{K \cdot E \cdot \odot}{\text { K.E. }(\text { asteroid })}=\frac{m}{M} \cdot \frac{m^{2}}{M^{2}}=\frac{m}{M} \ll 1$

$$
\text { So } E_{T o t .}=\frac{1}{2} m v^{2}-\frac{G M m}{r}
$$

For a circular orbit:

$$
v=\frac{2 \pi r}{p}
$$

Kepler's third law in full form:

$$
p^{2}=\frac{4 \pi^{2} r^{3}}{G M},(a \leftrightarrow r \text { here })
$$

We can use this formula to estimate the mass of an object once we have something orbiting it

$$
\begin{gathered}
\text { So } v^{2}=\frac{4 \pi^{2} r^{2}}{p^{2}}=\frac{G M}{r} \\
\text { And kinetic energy }=\frac{1}{2} m v^{2}=\frac{G m M}{2 r}
\end{gathered}
$$

(Same formula applies for ellipse, semi-major axis $a \leftrightarrow r$)

We can now simplify the formula for the total energy:

$$
\begin{gathered}
E_{\text {Tot. }}=\frac{1}{2} m v^{2}-\frac{G M m}{r} \\
E_{\text {Tot. }}=\frac{g M m}{2 r}-\frac{G M m}{r} \\
E_{\text {Tot. }}=\frac{-G M m}{2 r} \\
E_{\text {Tot. }}<0 \rightarrow \text { bound }
\end{gathered}
$$

Formula holds for any bound orbit, using a (semi-major axis) for r . $\rightarrow E_{\text {Toto }}$. Depends only on a, not eccentricity.

Three orbits, with the same semi-major axis but different eccentricities, have the same amount of orbital energy.
$e=0.9$

Closed orbits are in the shape of ellipses; as the energy increases, the orbit stretches out towards infinity until the orbit is a parabola and the body escapes.

$$
\begin{aligned}
& \text { For all bound orbits: } \\
& \frac{1}{2} m v^{2}-\frac{G M m}{r}=-\frac{G M m}{2 a} \\
& \text { Where } r \text { is the present radius, } \\
& \text { And } a \text { is the semi-major axis of the ellipse. }
\end{aligned}
$$

Mass m cancels: orbit is the same for Jupiter or a matchbox, it depends on M (Sun's mass) and a. Total orbital energy doesn't change but K and U trade off.

General formula for circular velocity:

$$
v=\sqrt{\frac{G M}{r}}
$$

You can use these formulae to work out speed and period of the Hubble Space Telescope, in its low-Earth orbit (600 km from the surface).

$$
\begin{gathered}
v_{\text {circ. }}=\sqrt{\frac{G M_{\text {Earth }}}{r}} \\
=\sqrt{\frac{6.67 \times 10^{-11} \times 6 \times 10^{24}}{(6378+600) \times 10^{3}}} \\
=7.6 \mathrm{~km} / \mathrm{s} \\
p=\frac{2 \pi r}{v_{c}}=96 \mathrm{~min} .
\end{gathered}
$$

Escape Velocity:

Take a satellite in orbit about the earth. If it burns fuel and increases total energy, eventually total energy will be zero and it will no longer be bound to the earth.

$$
\begin{gathered}
K . E .+P . E .=0 \\
\frac{1}{2} m v^{2}-\frac{G M m}{r}=0 \\
v^{2}=\frac{2 G M}{r} \\
\text { or } v_{\text {esc. }}=\sqrt{\frac{2 G M}{r}}
\end{gathered}
$$

At the surface of Earth: $v_{e}=11 \mathrm{~km} / \mathrm{s}$

Escape velocity from the solar system at 1AU:

$$
\sqrt{\frac{2 G M_{\odot}}{1 A U}}=4.2 \times 10^{6} \frac{\mathrm{~cm}}{\mathrm{~s}}=4.2 \times 10^{4} \frac{\mathrm{~m}}{\mathrm{~s}}=42 \frac{\mathrm{~km}}{\mathrm{~s}}
$$

Question:

What is the escape velocity from the solar system at the surface of the Sun?

For comparison, the Sun's orbital motion about the center of the Galaxy is $\sim 220 \mathrm{~km} / \mathrm{s}$.

Synchronous Satellites:

Escape velocity is $\sqrt{2} \times$ circular velocity at the same r.

$$
\odot^{r} \text { velocity: } v_{c}=\sqrt{\frac{G M}{r}}
$$

Synchronous satellite:
Takes 1 day to complete ITS orbit, going in same direction as Earth's rotation, so it appears fixed above one point.

Distance from Earth?

Kepler's third law: $p^{2}=\frac{4 \pi^{2} a^{3}}{G M_{\text {earth }}}$

$$
\text { Period }=1 \text { day }=24 \times 3600 s
$$

Solve for a: $a^{3}=\frac{p^{2} \times g \times M_{\text {earth }}}{4 \pi^{2}}=\frac{(24 \times 3600)^{2} \times 6.7 \times 10^{-8} \times 6 \times 10^{27}}{4 \pi^{2}}$

$$
a=4.2 \times 10^{9} \mathrm{~cm} \text { or } 42,000 \mathrm{~km}
$$

Earth's radius is 6378 km , so this is about $35,600 \mathrm{~km}$ above the surface. Quite different from low-Earth orbit!

Kepler's second law revisited:

Working in the center of mass frame
Now use $m_{1}, m_{2}, \vec{r}_{1}, \vec{r}_{2}, \vec{v}_{1}, \vec{v}_{2}$

Reduced mass $\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}$

$$
\begin{aligned}
\mathbf{r}_{1} & =-\frac{\mu}{m_{1}} \mathbf{r} \\
\mathbf{r}_{2} & =\frac{\mu}{m_{2}} \mathbf{r}
\end{aligned}
$$

Total orbital angular momentum of the system:

$$
\vec{L}=m_{1} \vec{r}_{1} \times \vec{v}_{1}+m_{2} \vec{r}_{2} \times \vec{v}_{2}
$$

This reduces to:

$$
\vec{L}=\mu \vec{r} \times \vec{v}
$$

In general, the two-body problem may be treated as a one-body problem with the reduced mass mu moving about total mass M located at radius r

