the H-R dugran
Plotting temperature (B-V, so. type) against luminosity for a sample of stans shows that They are preferentially found in certain ranges of temp \& luminosity

This is a very useful diagnostic for studies of stellar structure \& evolution

(a)

Temperature (\mathbf{K})

(b)

Fig 3.11. (a) HR diagram for over 40000 nearby stars studied by the Hipparcos satellite, designed to measure trigonometric parallaxes, so distances are known for all of these stars. In this figure, the color represents the number of stars in each category, with red being the most and blue being the least. (b) A schematic HR diagram, showing the main features of the actual diagrams. Luminosity classes are indicated by roman numerals. [(a) Michael Perryman, ESA, Hipparcos]

HR diagram
Most stans occupy a diagonal lie reaching from hot, luminous to cool, faint called the main sequence.

Hey are found here because all stans spend most of their lives in this evolutionary state, corresponding to H burning to He in the stan's core

Figure 3.11 (a) H-R diagram. (b) Schematic $H-R$ diagram. Luminosity classes are indicated by Roman numerals.

- Stars range in mass from vol M_{0} to $100 M_{0}$
- how-mass stans on the main sequence, less massive \& redder than the Sun, are the mast common

Q
Recall Stefan-Boltemann law:

$$
\angle \propto R^{2} T^{4}
$$

At a given temperative, where will the physically largest stans be in the HR diagram?
\rightarrow highest kimaosity, giants \& supergiants

The stellar luminosity function

Spectral Type

FIGURE 15-7. The data from Figures $15-5$ and $15-6$ have been plotted together in this diagram. Note the separation into distinct groups.

IGURE 15-6. The Hertzsprung-Russell diagram for the rightest stars in the night sky. The Sun is denoted as an range point.

Spectral Type

FIGURE 15-5. The Hertzsprung-Russell diagram for the stars closest to the Sun. The Sun is denoted as an orange point.

Stellar Luminosity function

- The least luminous stars are the most common ares
(makes sense: the nearest known star, Proximo Centaur, has $m_{V}=15$)
- This is partially initial conditions - mere low mass stans are formed; and partially due to stellar. ufectives - high mass stans evolve much faster.

