Terrestrial planets

<table>
<thead>
<tr>
<th></th>
<th>Mass (in Earth masses)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>0.06</td>
</tr>
<tr>
<td>Venus</td>
<td>0.82</td>
</tr>
<tr>
<td>Earth</td>
<td>1</td>
</tr>
<tr>
<td>Mars</td>
<td>0.11</td>
</tr>
</tbody>
</table>

(Moon = 0.01)

Mercury's orbit is the most elliptical, & aligned at 7° to the ecliptic.

- Perihelion = 0.31 AU
- Aphelion = 0.47 AU
Mass of Earth

The way to find the mass of an astronomical body is to put something in orbit around it.

We have the Moon

Use Newton's form of Kepler's 3rd law

\[(M_1 + M_2)P^2 = A^3\]

Units are important here:

- Mass in solar masses
- Period in years
- Distance in AU
Earth - Moon distance = 380,000 km

= 2.53×10^{-3} AU

 Orbital period of Moon = 27.3 days

= 7.48×10^{-2} years

Q.

Is this period measured from full moon to full moon? A diagram will help here

Assume that we can ignore the mass of the Moon because it is much smaller than the Earth's

$M_1 + M_2 = M_{\text{Earth}} + M_{\text{Moon}} \approx M_{\text{Earth}}$
So \[M_{\text{Earth}} \times P^2 = A^3 \]

\[M_{\text{Earth}} = \frac{A^3}{P^2} \]

\[= \left(\frac{2.53 \times 10^{-3} \text{AU}}{7.48 \times 10^{-2} \text{years}} \right)^3 \]

\[= 2.9 \times 10^{-6} \text{ solar masses} \]

\[= 5.8 \times 10^{27} \text{ grams} \]

(close to real value)

Q. How could we improve the accuracy of this technique?
What are some observations we can make to infer the interior structure of the Earth?
What are some observations we can make from Earth's surface that tell us about its interior?

Measure radius and we have mean density. This is 5.5 g/cm³, significantly higher than the mean density of rocks on the surface (~3 g/cm³).

The Earth is differentiated, with heavier material in its core.
Deepest hole ever dug ~10km deep (cf \(R_0 = 6378 \text{ km} \))

Volcanoes have brought material from a few 100's of km deep to the surface.

For any deeper probing we need to depend on seismology.

Both earthquakes and underground explosions such as nuclear tests propagate pressure waves through the Earth.
Q. Will an underground nuclear test work as well as an earthquake for studying the Earth's interior?

The Apollo astronauts left several seismometers on the surface of the Moon. We did not learn as much as we hoped about the Moon's interior because of a shortage of Moonquakes. Most of the seismic waves detected were caused by meteor impacts.
Seismology: use of earthquakes to probe the Earth's interior

Different seismic waves

P-waves (pressure) – will go through anything, solid or liquid

S-waves (shear) – needs a solid to transmit

Surface waves – largest amplitude, no information about interior of Earth.

FIGURE 6.3 P and S seismic waves.

Each travels at a different speed
FIGURE 6.4 A seismogram.
Figure 2.4 Velocity profiles of P-waves and S-waves within the Earth, and inferred densities. The term ‘velocity profile’ refers to the changes in velocity of seismic waves with increasing depth.

Figure 2.5 Propagation of (a) P-waves and (b) S-waves through a medium.
Figure 8.6: An earthquake sends out P and S waves in all directions into the Earth. These waves travel through the Earth and are detected by seismographs located in various places on the Earth. If the Earth is homogeneous, the sound waves travel along curved paths as shown. The wave reaching seismographs A through D are shown travelling directly through the Earth’s interior; an example of a wave reflected from the surface is the one going to seismograph E.
Figure 8.7: The paths followed by beams of sound waves emitted by an earthquake are shown for a two-layer Earth in which the speed of sound is lower in the core than in the mantle. The waves are observed by seismographs at locations A through H. The ring around the Earth on the opposite side of the planet from the earthquake labelled "shadow zone" is the region in which direct P-waves from the earthquake are not detected. The shadow zone for S-waves includes both that for P-waves and the cap on the opposite side of the Earth where P-waves are received.
Why might part of the Earth's core be liquid when the rocky surface layers are solid?

What might the original source of this heat be?

Why is the inner core solid?
Surface of Earth (crust) has continents and oceans.

Continents: generally granitic
Sea floor: basaltic (denser)

Beneath the crust is the mantle: rigid at the top, viscous below ~100 km where it is called the asthenosphere.

Above this (rigid mantle + crust) is called the lithosphere.

Chages in plasticity of mantle caused by increasing pressure toward center.
Figure 5. Early in its history, the Earth differentiated into a series of layers with distinct physical and perhaps compositional properties.
Continents and sea floor are both less than underlying mantle, so they 'float' on mantle like blocks of ice in water.

Plate tectonics theory is now well substantiated.

Q What are some of the pieces of evidence for it?
PLATE TECTONICS

EVIDENCE

shapes of continents
plants/geology
position of mountains, volcanos, earthquakes
rock ages
sea floor depths

BASIC CONCEPTS

~10 rigid plates form lithosphere
move with speeds ~ 2-20 cm/yr
sea floor spreading, lava rises to fill crack
pushes continents apart

subduction where plates meet
transform faults

volcano and mountain formation
FIGURE 6.5 Magnetic stripes on the sea floor, represented here by dark lines, spread out away from mid-ocean ridges symmetrically in both directions.

Magnetometer data from mid-Atlantic ridge; magnetic fields flip back and forward with distance away from spreading center.