Brightness of stars - measurement received
Flux of energy/from star f : energy per unit area per unit time Greeks vented magnitude scale - logarithmic

- first magnitude stans bingltest
- 6th mag. faintest visible with naked eye
a difference of 5 magnitudes is a difference of 100 in brightness (energy flux)

$$
f_{1} / f_{2}=100^{\left(m_{2}-m_{1}\right) / 5}
$$

Kirchoff's Laws
(i) A hot dense gas (optically thick) an hot solid object produces a continuous spectrum (blactbodyradiation)
(ii) a lot diffuse gas produces bright emission hies electron moves to orbital of lower energy)
(iii) a cool differs gas in trout of a continuer source produces abruption lino in the continuous spectien (electrons absorb photons a move to higher energy level)

Blackbody radiation
Continuous radiation from body in thermal equilibrium

Intensity of blackbody radiation between ν and $\nu \neq d \nu$, tEmperature T,

$$
I(v, T)=\frac{2 h v^{3} / c^{2}}{e^{h \nu / k T}-1}
$$

Can convert to $I(\lambda, T)$ via

$$
\begin{aligned}
I(\lambda, T) & =I(\nu, T) \frac{d \nu}{d \lambda} \\
& =\frac{2 h c^{2} / \lambda^{5}}{e^{1 c / \lambda k T}-1}
\end{aligned}
$$

(stains are reasonable appracinations to blackbodies)

Wein's haw
For a blactbody,

$$
\begin{aligned}
& \lambda_{\text {max }} T=3 \times 10^{7} \AA \mathrm{~K} \\
& \left(1 \AA=10^{-10} \mathrm{n}=0.1 \mathrm{~nm}\right)
\end{aligned}
$$

Stefar-Boltzmann Law
Relates temperatuve \& nadius of a stan to its tatal energy output Enengy/urit time/unit sufface area (fhux)

$$
E=\Omega T^{4}
$$

3 is statan-Bollinnema constant

Surface area of star of radeu's R is $4 \pi R^{2}$

Total energy per unit time produced by stan \equiv luminosity $<$

$$
L=4 \pi R^{2} \sigma T^{4}
$$

$>$ Note the difference between luminosity, an intrinsic property of a star, and breghtrems, how it appears on Earl, depends on both L and distance.

Q The temperative of a stan tells us a lot (although not. everything) about its physical \& evolutionary state.
What are 2 ways that astronomers might measure the stan's temperature?
A. Color

- Shape of spectrum

Measuring colons of stans
Simplest abservational route to stellar temperature
\rightarrow inge stan through different color filters \& tate ratio of brightnesses.
(Single because all you reed is a CCD \& some filters)

Colons are brightness ratios, so calculated by subtracting magnitudes

$$
\begin{aligned}
\text { eg } B-V \text { color } & =2.5 \log _{10}\left(\frac{I_{\nu}}{I_{B}}\right) \\
& =m_{B}-m_{V}
\end{aligned}
$$

(written for convervense $B-V$)

Fic. 1-Transmission curves are shown for the U, B, V, R, I filter combinations used in this program. They were measured with the Oriel spectrometer at CTIO. The long wavelength cutoff of a typical RCA 31034 photomultiplier is shown as a dashed curve.

Figure 11-4 Color index in the $B V$ system. Blackbody curves for 20,000 and 3000 K , along with their intensities at B and V wavelengths. Note that $B-V$ is negative for the hotter star and positive for the cooler one.

Q Stellar temperatures range from $>20,000 \mathrm{~K}$ to $\sim 3000 \mathrm{~K}$.
which fitters would be the best choice ton measuring the colon of

- a very hot, faint star
- a cool, faint stan? Why ?
\rightarrow study a faint stan where most of its light comes out
$u-B$ for hot star
R-I for cool stan
Q
The parallax star is LHS 2924 It has apparent magnitude $m_{v}=19.5$ and colon $V-I=4 \cdot 4$.
is the star bluer on redder than the 'average' stan with $V-7=0.5$?

