Cllapse of a proto-star
Sounce of energy : gravity only

Grautationally unstabe doud cool, large, low luminosity Dust enshranded, need \mathbb{R}
 When collopses, some pe. heato clacd
same radiated awny (optiolly thin) (some cooling so collopse contrues)

- Inver region collopses more rapidy, pe-stellar core forms

Timescale for collapse
Think of the early stages of collapse of the gas cloud
can ignore pressure at this stage because density is so low.
Even if cloud starts with roughly uniform density, this changes fast
Q Why?

- Partides close to the center collapse cunard tint can dotenesity trued) increases faster there
- as it becomes denser, gravitational forces are larger so collapse time shouter atc
core 'bounce' : pressure builds up a cove expands

- interaction between wflalling 2 expanding material bounce stops, collapse proceeds

- core density increases until photons cant escape (optically thick)

Free-fall tire:
Consider particle, mass a edge of cloud, mans M, radius R, initial density ρ_{0}.

Particle falls straight to center Follows elliptical orbit with $e=1$ and semi-major axis $a=R / 2$

$$
m=\frac{4}{3} \pi R^{3} \rho_{0}=\frac{32}{3} \pi a^{3} \rho_{0}
$$

Kepler's Third law:

$$
\begin{aligned}
& \frac{P^{2}}{a^{3}}=\frac{4 \pi^{2}}{g M} \\
& P=\left(\frac{3 \pi}{8 g \rho_{0}}\right)^{1 / 2}
\end{aligned}
$$

Free-fall time $\propto \rho^{-1 / 2}$

For a giant molecular cloud

$$
\rho \simeq 10^{-15} \mathrm{~kg} / \mathrm{m}^{3}
$$

Free-fall time is $\sim 10^{5}$ years.

Viral theorem

For a system in equelebricuu,

$$
2 E_{\text {kinetic }}=-u
$$

potential energy
So if $E_{\text {kinetic }}+U=0$

$$
\text { Total energy }=\frac{u}{2}
$$

Implications of urial theorem

$$
E \text { (total energy) }=\frac{\text { pe. }}{2}
$$

So as clad collapses, pe decreases and E decreases
\Rightarrow some of energy of cloud is radiated away Since k.e $=-\frac{p . e}{2}$, half of energy gourd is cost, half goes to creasing kinetic energy (both uffall \& random motions)

Example an luminosity of protostar.
Viral theorem says that amount of energy radiated is (aurent pe)/2

Over 100 years, collapse of $1 M_{\odot}$ to $500 R_{\odot}$ gases $170 L_{\circ}$

The other half is available for heating could, speeding up collapse, etc.
Shote slat a similar calculation can be made for the heating of a planet by accretion of plarationals)

* Balance between heating and energy loss means that stan formation is possible $*$
- Theoretical calculations of gravitational collapse of protostans give evolutionary tracks which can be compared with observations of "young stellar objects"

Question

As a dense molecular cloud starts the collopse that will lead to the butch of a stan, where should it be plotted on the H-R deagran?

Temperature tot cool

- another core bounce
temperature \uparrow and star ends up on the diag completely convective now

All stans, whatever mass, end up at about the same temperature now

FIGURE 17-6. The path in the H-R diagram of a protostar during dynamical collapse.

FIGURE 17-7. The path in the H-R diagram of protostars of different masses.
completely corrective \Rightarrow cooling kips up with collapse optically thick, no radiative cooking "Hyadi track" Temperature almost constant ouloprigh $\Rightarrow L \downarrow \quad\left(\nmid<\times 4 \pi R^{2}\right)$

- radiation takes over, surface temp \uparrow still collapsing but T balances R \& L stays \sim constant
- core temperature reaches $\sim 10^{7} \mathrm{k}$ fusion reactors start star is an main sequence where it will spend most of ts life

STAR FORMATION
the stang so for

- importance of understanding how stars form galaxy formation cosmology
- Initial conditions gent molecular cloud ($\sim 10^{6} \mathrm{~m}_{0}$) of gas \& dust
low density $\left(10^{2}-10^{3} \mathrm{~d} / 2\right.$ molecules $\left./ \mathrm{cm}^{3}\right)$ cod (~10K)

Conditions for gravitational collapse gravity v s pressure (ignore mag fields ton the moment.)
(4 hydrostatic equilibruin)

- Conditions for sphere to be gravitationally bound

$$
\begin{aligned}
& \text { k.e. +p.e. } \leqslant 0 \\
& \frac{3}{2} \frac{m}{n} k T-\frac{3}{5} g \frac{m^{2}}{R} \leqslant 0
\end{aligned}
$$

gives Tears length $R_{T} \simeq \sqrt{\frac{k T}{S m \rho}}$
Jeans mass $m_{J} \approx 4\left(\frac{k T}{g_{m}}\right)^{3 / 2}\left(\frac{1}{\rho}\right)^{1 / 2}$

Timescale for collapse:
tree tall time $t_{f f} \approx \frac{1}{\sqrt{g P}}$

Viral theorem : in equilibrium

$$
\text { k.e. }=-\frac{p \cdot e}{2}
$$

