Starbursts and Gas Dynamics in Low-Mass Galaxies

Federico Lelli

Thesis defence Friday 11:00

Promotors: Marc Verheijen Filippo Fraternali In collaboration with: Renzo Sancisi

Outline:

Introduction on (starbursting) dwarfs (Chap. 1)

- I. Large-scale HI morphology (Chaps. 2 and 6)
- II. Internal dynamics (Chaps. 2, 3 and 4)
- III. Evolution of dwarf galaxies (Chaps. 3 and 5)
- IV. A scaling relation for disk galaxies (Chap. 7)
- Conclusions (Chap. 8)

Introduction

Total Stellar Mass

Central Stellar Density

Spheroidals

Irregulars

Starburst dwarfs

- no recent SF
- close to spirals *or* in galaxy cluster

Other names: dEs, early-type dwarfs - relatively-low SF

WLM

isolated, groups, or
outskirts of clusters

Other names:

Im, Sm, late-type dwarfs

- strong bursts of SF
- isolated, groups, or outskirts of clusters

Other names: HII galaxies, BCDs

BCDs = Starbursting Dwarfs

- Blue (young massive stars)
- Compact (small scale-length, high surf. bright.)
- **Dwarf** ($M_* \sim 10^7 10^9 M_{\odot}$)

BCDs in a cosmological context

Stellar feedback is invoked to solve several problems...

- number density of low-mass galaxies (e.g. Kauffmann+1993, Vogelsberger+2013)
- existence of bulgeless galaxies (e.g. Governato+2010, Brook+2011)
- CUSD-CORE problem (e.g. Navarro+1996, Oh+2011, Governato+2012)

Stellar Feedback in BCDs

- Velocity of the ionized gas does *not* exceed V_{esc}

(e.g. Martin 1996, 1998; Schwartz & Martin 2004; van Eymeren+2009, 2010)

- Mass of the hot gas ~1% M_{HI} (e.g. Ott+2005)

BCDs ~ high-z galaxies ?

- clumpy morphologies
- high gas fractions $(M_{gas}/M_* > 1)$
- low metallicities (0.2 < Z/Z_{\odot} < 0.02)
- turbulent gaseous disks ($V_{rot}/\sigma_{v} < 5-6$)

Stellar populations of BCDs

Color-Magnitude Diagram

The SFH provides:

- starburst timescales
- energies from SN & stellar winds
- mass in young & old stars

HI properties of BCDs

Strong HI Concentration

Steep Velocity Gradients

Central HI densities 2-3 higher than Irrs (e.g. Taylor+1994, van Zee+1998, vanZee+2001, Simpson & Gottesman 2000, Most+2013)

Fast rotation? Inflows/outflows? (e.g. Meurer+1996, Meurer+1998, van Zee+2001, Thuan+2004, Elson+2010, Elson+2012)

Questions:

 What triggers the starburst? (external vs internal mechanisms)

What are the progenitors/descendants?
(evolution from/to Irrs and Sphs; role of stellar feedback)

Questions:

 What triggers the starburst? (external vs internal mechanisms)

What are the progenitors/descendants?
(evolution from/to Irrs and Sphs; role of stellar feedback)

My Ph.D. thesis:

- HI study of a "large" sample of 18 BCDs
- Detailed modelling of the HI kinematics
- Combine dynamics & SFHs (from HST studies)

Sample of 18 BCDS (resolved into single stars by HST)

R_{opt}~ 0.5 - 5 kpc

 $M_{\star} \sim 10^7 - 10^9 M_{\odot}$

HST studies:

- Galaxy Distance
- Star Formation History:
- starburst timescales
- mass young & old stars

Sample of 18 BCDS (resolved into single stars by HST)

HST studies:

- Galaxy Distance
- Star Formation History:
- starburst timescales
- mass young & old stars

21-cm line obs (VLA, WSRT, ATCA):

- HI distribution
- HI kinematics

 $M_{\star} \sim 10^7 - 10^9 M_{\odot}$ $R_{opt} \sim 0.5 - 5 kpc$

I. Large-scale HI morphology: clues to the starburst trigger (Chapters 2 and 6)

Large-scale HI distribution

Irregular: Sextans B

1 kpc

HI map from Ott+2012, ApJ

Lowest HI contour = $5 \times 10^{19} \text{ cm}^{-2}$

Large-scale HI distribution

Lowest HI contour = $5 \times 10^{19} \text{ cm}^{-2}$

Quantifying the HI Asymmetry

Standard A parameter

(e.g. Conselice 2003, Holwerda+2011)

$$\mathcal{A} = \frac{\sum_{i, j} |I(i, j) - I_{180^{\circ}}(i, j)|}{\sum_{i, j} |I(i, j)|}$$

Our A parameter (Chapter 6)

$$A = \frac{1}{N} \sum_{i,j}^{N} \frac{|I(i,j) - I_{180^{\circ}}(i,j)|}{|I(i,j) + I_{180^{\circ}}(i,j)|}$$

Good for outer regions!

For all galaxies:

- uniform column density sensitivity
- similar linear resolution (in kpc)

Asymmetry parameter for BCDs

HI contours = 1, 4, 16 x 10^{20} cm⁻²

Asymmetry parameter: examples

HI contours = 1, 4, 16 x 10^{20} cm⁻²

HI Asymmetry: BCDs vs Irrs

BCDs have more asymmetric large-scale HI distributions than Irrs

Irregulars from the VLA-ANGST survey (Ott et al. 2012)

HI Asymmetry: BCDs vs Irrs

BCDs have more asymmetric large-scale HI distributions than Irrs

External mechanisms triggered the starburst: - Interactions/mergers? - Cold gas accretion?

Irregulars from the VLA-ANGST survey (Ott et al. 2012)

HI Asymmetry vs starburst "age"

Message I

Starburst triggered by external mechanism:

- interactions/mergers between Irrs?
- cold gas accretion from the IGM?

I. Internal Dynamics of BCDs: distribution of baryons & dark matter (Chapters 2, 3 and 4)

Gas kinematics of BCDs

~50% rotating HI disk ~40% kin. disturbed HI disk ~10% unsettled HI distr.

Gas kinematics of BCDs

Derivation of the rotation curve

2D fit to the Velocity Field

Derivation of the rotation curve

2D fit to the Velocity Field

Derivation of the rotation curve

2D fit to the Velocity Field

Correction for pressure-support

90 +60 +30 0 -30 -60 -90+90 +60 +30 0

Distance along the slice ["]

-30 -60 -90

Distance along the slice ["]

Mass Model: UGC 4483

At least ~30% of the mass within R_H is baryonic (gas + old stars)

Molecular mass is unknown...

CO lines undetected CO-to-H₂ conversion may depend on Z! Indirect estimate: $M_{mol}(M_{\odot}) \sim 2 \times 10^9 \text{ SFR } (M_{\odot}/\text{yr})$

(e.g. Leroy+2008)

Baryonic Fractions in BCDs

Baryons constitute a relevant fraction of the dynamical mass (similar to typical Irrs, e.g. Swaters+2011)

Atomic Gas Fractions

0

Atomic Gas Fractions

Message II

BCDs & Irrs have similar baryonic & gas fract.

The starburst does not blow away the ISM.

III. Evolution of dwarf galaxies: linking dynamics & star formation (Chapter 5 = Lelli et al. accepted!)

Inner Circular-Velocity Gradient

- Measure the inner shape of the potential well
- Equal to the angular speed along the solid-body part

$V(R_d)/R_d \propto \sqrt{\rho_0}$

BCDs vs Irrs

Compact Irrs = similar ρ_0 as BCDs

Irrs from Swaters+2009

Descendants of BCDs?

Compact IrrsPhotometry:HSB exponential $\mu_0 \sim 20 \ R \ mag \ asec^{-2}$ $R_d \sim 400 \ pc$

HI kinematics: Steeply-rising rotation curve!

Rotating Sphs in Virgo Cluster

NW Rotation Velocity (km s⁻¹) **Rotation Velocity** 50 φ 0 -50 Obs. -20 0 20 150 Velocity Dispersion (km s⁻¹) **Velocity Dispersion** 100 000 0 50 00 0 O 0 -20 20 0 Offset along slit (arcsec)

Optical Spectroscopy: e.g. van Zee et al. (2004)

$V(R_d)/R_d \propto \sqrt{\rho_0}$ Rotating Sphs

$V(R_d)/R_d \propto \sqrt{\rho_0}$ Rotating Sphs

Descendants of BCDs?

Providing that some external mechanism removes the gas.

Message III

BCDs are different from typical Irrs: strong central concentration of mass

Link: star-formation & inner potential well Evolution: compact Irrs & rotating Sphs

IV. A scaling-relation for disk galaxies:

linking baryonic & dynamical mass density (Chapter 7 = Lelli et al. 2013, MNRAS: letters)

The visible – dark matter coupling

Renzo's Rule: "For any feature in the luminosity profile there is a corresponding feature in the rotation curve and vice versa." (Sancisi 2004)

Circular-velocity gradient for spirals

$$V(R) = \sum_{n=1}^{m} a_n \times R^n$$

$$a_1 = \lim_{R \to 0} dV/dR.$$

5 Galaxy Samples:

- Noordermeer 06: S0 – Sa

- de Blok+2008: Sab Irr
- Begeman 1987: Sb Sc
- Verheijen 1997: Sb Irr
- Swaters 1999: Sd Irr

Velocity gradient vs central SB

Scaling Relations for Rotating Galaxies

Message IV

Baryonic density dynamical mass density

...even in galaxies that should be DM-dominated!

Conclusions

Starburst is triggered by external mechanisms

- Interactions/mergers? Cold gas accretion?

- BCDs and Irrs have similar baryonic & gas fract.
 - No evidence for massive outflows

BCDs have a strong central mass concentration

- starburst <--> inner potential well
- BCDs <--> compact Irrs & rotating Sphs
- Scaling relation: velocity gradient vs central SB
 - Dynamical mass density <--> Baryonic density

More Slides

Link: Star Formation – Dynamics

 $H\alpha$ fluxes from Kennicutt+2008

Theoretical Interpretation Expected relation:

$$\log[d_R V(0)] = -0.2\,\mu_0 + 0.5\log\left(\alpha G \frac{M_*/L}{z_0 f_{\text{bar},0}}\right).$$

Observed relation:

$$\log[d_R V(0)] = (-0.205 \pm 0.023) \,\mu_0 + (5.91 \pm 0.52).$$

If slope = -0.2, puzzling fine-tuning between:

- geometrical parameters (α , z_0)
- stellar populations (M_{*}/L)
- dark matter content (f_{bar, 0})

Velocity Gradient vs Vmax

Optical Structure of BCDs

Optical Structure of BCDs

Old component of BCDs: $\mu_0 \sim 21.5 \text{ mag asec}^2$ (Freeman value)

Papaderos et al. (1996, 2002); Salzer & Norton (1999); Cairos et al. (2001); Gil de Paz & Madore (2005); Amorin et al. (2009).